Matches in DBpedia 2015-04 for { <http://dbpedia.org/resource/Lehmann%E2%80%93Scheff%C3%A9_theorem> ?p ?o }
Showing triples 1 to 22 of
22
with 100 triples per page.
- Lehmann%E2%80%93Scheff%C3%A9_theorem abstract "In statistics, the Lehmann–Scheffé theorem is prominent in mathematical statistics, tying together the ideas of completeness, sufficiency, uniqueness, and best unbiased estimation. The theorem states that any estimator which is unbiased for a given unknown quantity and which is based on only a complete, sufficient statistic (and on no other data-derived values) is the unique best unbiased estimator of that quantity. The Lehmann–Scheffé theorem is named after Erich Leo Lehmann and Henry Scheffé, given their two early papers.Formally, if T is a complete sufficient statistic for θ and E(g(T)) = τ(θ) then g(T) is the minimum-variance unbiased estimator (MVUE) of τ(θ).".
- Lehmann%E2%80%93Scheff%C3%A9_theorem wikiPageID "342602".
- Lehmann%E2%80%93Scheff%C3%A9_theorem wikiPageRevisionID "588023899".
- Lehmann%E2%80%93Scheff%C3%A9_theorem hasPhotoCollection Lehmann–Scheffé_theorem.
- Lehmann%E2%80%93Scheff%C3%A9_theorem subject Category:Estimation_theory.
- Lehmann%E2%80%93Scheff%C3%A9_theorem subject Category:Statistical_theorems.
- Lehmann%E2%80%93Scheff%C3%A9_theorem type Abstraction100002137.
- Lehmann%E2%80%93Scheff%C3%A9_theorem type Communication100033020.
- Lehmann%E2%80%93Scheff%C3%A9_theorem type Message106598915.
- Lehmann%E2%80%93Scheff%C3%A9_theorem type Proposition106750804.
- Lehmann%E2%80%93Scheff%C3%A9_theorem type Statement106722453.
- Lehmann%E2%80%93Scheff%C3%A9_theorem type StatisticalTheorems.
- Lehmann%E2%80%93Scheff%C3%A9_theorem type Theorem106752293.
- Lehmann%E2%80%93Scheff%C3%A9_theorem comment "In statistics, the Lehmann–Scheffé theorem is prominent in mathematical statistics, tying together the ideas of completeness, sufficiency, uniqueness, and best unbiased estimation. The theorem states that any estimator which is unbiased for a given unknown quantity and which is based on only a complete, sufficient statistic (and on no other data-derived values) is the unique best unbiased estimator of that quantity.".
- Lehmann%E2%80%93Scheff%C3%A9_theorem label "Lehmann–Scheffé theorem".
- Lehmann%E2%80%93Scheff%C3%A9_theorem label "Satz von Lehmann–Scheffé".
- Lehmann%E2%80%93Scheff%C3%A9_theorem label "Teorema de Lehmann–Scheffé".
- Lehmann%E2%80%93Scheff%C3%A9_theorem label "Théorème de Lehmann-Scheffé".
- Lehmann%E2%80%93Scheff%C3%A9_theorem sameAs m.01y940.
- Lehmann%E2%80%93Scheff%C3%A9_theorem sameAs Lehmann–Scheffé_theorem.
- Lehmann%E2%80%93Scheff%C3%A9_theorem wasDerivedFrom Lehmann–Scheffé_theorem?oldid=588023899.
- Lehmann%E2%80%93Scheff%C3%A9_theorem isPrimaryTopicOf Lehmann–Scheffé_theorem.