Matches in DBpedia 2015-04 for { <http://dbpedia.org/resource/Complex_conjugate_root_theorem> ?p ?o }
Showing triples 1 to 29 of
29
with 100 triples per page.
- Complex_conjugate_root_theorem abstract "In mathematics, the complex conjugate root theorem states that if P is a polynomial in one variable with real coefficients, and a + bi is a root of P with a and b real numbers, then its complex conjugate a − bi is also a root of P.It follows from this (and the fundamental theorem of algebra), that if the degree of a real polynomial is odd, it must have at least one real root. That fact can also be proven by using the intermediate value theorem.".
- Complex_conjugate_root_theorem wikiPageID "9178245".
- Complex_conjugate_root_theorem wikiPageRevisionID "607163243".
- Complex_conjugate_root_theorem hasPhotoCollection Complex_conjugate_root_theorem.
- Complex_conjugate_root_theorem subject Category:Articles_containing_proofs.
- Complex_conjugate_root_theorem subject Category:Polynomials.
- Complex_conjugate_root_theorem subject Category:Theorems_in_algebra.
- Complex_conjugate_root_theorem subject Category:Theorems_in_complex_analysis.
- Complex_conjugate_root_theorem type Abstraction100002137.
- Complex_conjugate_root_theorem type Communication100033020.
- Complex_conjugate_root_theorem type Function113783816.
- Complex_conjugate_root_theorem type MathematicalRelation113783581.
- Complex_conjugate_root_theorem type Message106598915.
- Complex_conjugate_root_theorem type Polynomial105861855.
- Complex_conjugate_root_theorem type Polynomials.
- Complex_conjugate_root_theorem type Proposition106750804.
- Complex_conjugate_root_theorem type Relation100031921.
- Complex_conjugate_root_theorem type Statement106722453.
- Complex_conjugate_root_theorem type Theorem106752293.
- Complex_conjugate_root_theorem type TheoremsInAlgebra.
- Complex_conjugate_root_theorem type TheoremsInComplexAnalysis.
- Complex_conjugate_root_theorem comment "In mathematics, the complex conjugate root theorem states that if P is a polynomial in one variable with real coefficients, and a + bi is a root of P with a and b real numbers, then its complex conjugate a − bi is also a root of P.It follows from this (and the fundamental theorem of algebra), that if the degree of a real polynomial is odd, it must have at least one real root. That fact can also be proven by using the intermediate value theorem.".
- Complex_conjugate_root_theorem label "Complex conjugate root theorem".
- Complex_conjugate_root_theorem sameAs m.027_b0c.
- Complex_conjugate_root_theorem sameAs Q5156572.
- Complex_conjugate_root_theorem sameAs Q5156572.
- Complex_conjugate_root_theorem sameAs Complex_conjugate_root_theorem.
- Complex_conjugate_root_theorem wasDerivedFrom Complex_conjugate_root_theorem?oldid=607163243.
- Complex_conjugate_root_theorem isPrimaryTopicOf Complex_conjugate_root_theorem.