Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q934200> ?p ?o }
Showing triples 1 to 78 of
78
with 100 triples per page.
- Q934200 subject Q8792316.
- Q934200 abstract "In the area of modern algebra known as group theory, the Mathieu groups are the five sporadic simple groups M11, M12, M22, M23 and M24 introduced by Mathieu (1861, 1873). They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 objects. They were the first sporadic groups to be discovered.Sometimes the notation M9, M10, M20 and M21 is used for related groups (which act on sets of 9, 10, 20, and 21 points, respectively), namely the stabilizers of points in the larger groups. While these are not sporadic simple groups, they are subgroups of the larger groups and can be used to construct the larger ones. John Conway has shown that one can also extend this sequence up, obtaining the Mathieu groupoid M13 acting on 13 points. M21 is simple, but is not a sporadic group, being isomorphic to PSL(3,4).".
- Q934200 wikiPageExternalLink books?id=LMAKAAAAIAAJ&pg=PA187.
- Q934200 wikiPageExternalLink f249.
- Q934200 wikiPageExternalLink mathieu.htm.
- Q934200 wikiPageExternalLink afficher_notice.php?id=JMPA_1873_2_18_A2_0.
- Q934200 wikiPageExternalLink monsieur-mathieu.html.
- Q934200 wikiPageExternalLink item?id=BSMF_1900__28__266_0.
- Q934200 wikiPageExternalLink mathieu.pdf.
- Q934200 wikiPageExternalLink books?id=38fEMl2-Fp8C.
- Q934200 wikiPageExternalLink books?id=McMgAAAAMAAJ.
- Q934200 wikiPageExternalLink books?id=RvvuAAAAMAAJ.
- Q934200 wikiPageExternalLink books?id=TPPkAAAAIAAJ.
- Q934200 wikiPageExternalLink books?id=ggqxuG31B3cC.
- Q934200 wikiPageExternalLink books?id=ksNjpwAACAAJ.
- Q934200 wikiPageExternalLink books?id=upYwZ6cQumoC.
- Q934200 wikiPageExternalLink M10.
- Q934200 wikiPageExternalLink M11.
- Q934200 wikiPageExternalLink M12.
- Q934200 wikiPageExternalLink M20.
- Q934200 wikiPageExternalLink M21.
- Q934200 wikiPageExternalLink M22.
- Q934200 wikiPageExternalLink M23.
- Q934200 wikiPageExternalLink M24.
- Q934200 wikiPageExternalLink 978-1-4612-0731-3.
- Q934200 wikiPageExternalLink id322438247.
- Q934200 wikiPageExternalLink article.cfm?id=puzzles-simple-groups-at-play.
- Q934200 wikiPageWikiLink Q125977.
- Q934200 wikiPageWikiLink Q130998.
- Q934200 wikiPageWikiLink Q1333178.
- Q934200 wikiPageWikiLink Q1335680.
- Q934200 wikiPageWikiLink Q1340623.
- Q934200 wikiPageWikiLink Q1412905.
- Q934200 wikiPageWikiLink Q1534522.
- Q934200 wikiPageWikiLink Q176916.
- Q934200 wikiPageWikiLink Q1813899.
- Q934200 wikiPageWikiLink Q2076913.
- Q934200 wikiPageWikiLink Q2137023.
- Q934200 wikiPageWikiLink Q2157373.
- Q934200 wikiPageWikiLink Q217595.
- Q934200 wikiPageWikiLink Q2365536.
- Q934200 wikiPageWikiLink Q2510203.
- Q934200 wikiPageWikiLink Q2682286.
- Q934200 wikiPageWikiLink Q268961.
- Q934200 wikiPageWikiLink Q288465.
- Q934200 wikiPageWikiLink Q2914964.
- Q934200 wikiPageWikiLink Q2997419.
- Q934200 wikiPageWikiLink Q3024615.
- Q934200 wikiPageWikiLink Q310755.
- Q934200 wikiPageWikiLink Q382520.
- Q934200 wikiPageWikiLink Q392663.
- Q934200 wikiPageWikiLink Q438814.
- Q934200 wikiPageWikiLink Q4420916.
- Q934200 wikiPageWikiLink Q4596974.
- Q934200 wikiPageWikiLink Q4667320.
- Q934200 wikiPageWikiLink Q4734006.
- Q934200 wikiPageWikiLink Q4826703.
- Q934200 wikiPageWikiLink Q522216.
- Q934200 wikiPageWikiLink Q603880.
- Q934200 wikiPageWikiLink Q6154863.
- Q934200 wikiPageWikiLink Q6787235.
- Q934200 wikiPageWikiLink Q6787236.
- Q934200 wikiPageWikiLink Q6787237.
- Q934200 wikiPageWikiLink Q6787238.
- Q934200 wikiPageWikiLink Q6787240.
- Q934200 wikiPageWikiLink Q6787241.
- Q934200 wikiPageWikiLink Q6821892.
- Q934200 wikiPageWikiLink Q6872431.
- Q934200 wikiPageWikiLink Q7249475.
- Q934200 wikiPageWikiLink Q734209.
- Q934200 wikiPageWikiLink Q849512.
- Q934200 wikiPageWikiLink Q874429.
- Q934200 wikiPageWikiLink Q8792316.
- Q934200 wikiPageWikiLink Q899539.
- Q934200 wikiPageWikiLink Q912887.
- Q934200 wikiPageWikiLink Q942433.
- Q934200 comment "In the area of modern algebra known as group theory, the Mathieu groups are the five sporadic simple groups M11, M12, M22, M23 and M24 introduced by Mathieu (1861, 1873). They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 objects. They were the first sporadic groups to be discovered.Sometimes the notation M9, M10, M20 and M21 is used for related groups (which act on sets of 9, 10, 20, and 21 points, respectively), namely the stabilizers of points in the larger groups.".
- Q934200 label "Mathieu group".