Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q7885119> ?p ?o }
Showing triples 1 to 74 of
74
with 100 triples per page.
- Q7885119 abstract "In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra which can be considered uniform tilings of the sphere.Most uniform tilings can be made from a Wythoff construction starting with a symmetry group and a singular generator point inside of the fundamental domain. A planar symmetry group has a polygonal fundamental domain and can be represented by the group name represented by the order of the mirrors in sequential vertices.A fundamental domain triangle is (p q r), and a right triangle (p q 2), where p, q, r are whole numbers greater than 1. The triangle may exist as a spherical triangle, a Euclidean plane triangle, or a hyperbolic plane triangle, depending on the values of p, q and r.There are a number of symbolic schemes for naming these figures, from a modified Schläfli symbol for right triangle domains: (p q 2) → {p, q}. The Coxeter-Dynkin diagram is a triangular graph with p, q, r labeled on the edges. If r = 2, the graph is linear since order-2 domain nodes generate no reflections. The Wythoff symbol takes the 3 integers and separates them by a vertical bar (|). If the generator point is off the mirror opposite a domain node, it is given before the bar.Finally tilings can be described by their vertex configuration, the sequence of polygons around each vertex.All uniform tilings can be constructed from various operations applied to regular tilings. These operations as named by Norman Johnson are called truncation (cutting vertices), rectification (cutting vertices until edges disappear), and Cantellation (cutting edges). Omnitruncation is an operation that combines truncation and cantellation. Snubbing is an operation of Alternate truncation of the omnitruncated form. (See Uniform polyhedron#Wythoff construction operators for more details.)".
- Q7885119 thumbnail Tiling_Dual_Semiregular_V4-8-8_Tetrakis_Square-2-color-zoom.svg?width=300.
- Q7885119 wikiPageExternalLink uniftil.htm.
- Q7885119 wikiPageExternalLink sici?sici=0080-4614%2819540513%29246%3A916%3C401%3AUP%3E2.0.CO%3B2-4.
- Q7885119 wikiPageExternalLink tilings.html.
- Q7885119 wikiPageExternalLink tessel.htm.
- Q7885119 wikiPageExternalLink www.tess-elation.co.uk.
- Q7885119 wikiPageExternalLink ue2.
- Q7885119 wikiPageWikiLink Q1128619.
- Q7885119 wikiPageWikiLink Q12507.
- Q7885119 wikiPageWikiLink Q12797591.
- Q7885119 wikiPageWikiLink Q129916.
- Q7885119 wikiPageWikiLink Q13422697.
- Q7885119 wikiPageWikiLink Q1347011.
- Q7885119 wikiPageWikiLink Q1420342.
- Q7885119 wikiPageWikiLink Q1474108.
- Q7885119 wikiPageWikiLink Q150542.
- Q7885119 wikiPageWikiLink Q150546.
- Q7885119 wikiPageWikiLink Q169451.
- Q7885119 wikiPageWikiLink Q17078585.
- Q7885119 wikiPageWikiLink Q1878538.
- Q7885119 wikiPageWikiLink Q2114050.
- Q7885119 wikiPageWikiLink Q214856.
- Q7885119 wikiPageWikiLink Q222032.
- Q7885119 wikiPageWikiLink Q2241033.
- Q7885119 wikiPageWikiLink Q2471563.
- Q7885119 wikiPageWikiLink Q2617832.
- Q7885119 wikiPageWikiLink Q265785.
- Q7885119 wikiPageWikiLink Q2995026.
- Q7885119 wikiPageWikiLink Q2995289.
- Q7885119 wikiPageWikiLink Q3063287.
- Q7885119 wikiPageWikiLink Q3063292.
- Q7885119 wikiPageWikiLink Q3063631.
- Q7885119 wikiPageWikiLink Q3063640.
- Q7885119 wikiPageWikiLink Q3063647.
- Q7885119 wikiPageWikiLink Q3063656.
- Q7885119 wikiPageWikiLink Q3063671.
- Q7885119 wikiPageWikiLink Q3071715.
- Q7885119 wikiPageWikiLink Q3131849.
- Q7885119 wikiPageWikiLink Q331350.
- Q7885119 wikiPageWikiLink Q3505059.
- Q7885119 wikiPageWikiLink Q3847476.
- Q7885119 wikiPageWikiLink Q3849911.
- Q7885119 wikiPageWikiLink Q3887718.
- Q7885119 wikiPageWikiLink Q3893516.
- Q7885119 wikiPageWikiLink Q3895039.
- Q7885119 wikiPageWikiLink Q4189855.
- Q7885119 wikiPageWikiLink Q46463.
- Q7885119 wikiPageWikiLink Q4779310.
- Q7885119 wikiPageWikiLink Q4779316.
- Q7885119 wikiPageWikiLink Q4967193.
- Q7885119 wikiPageWikiLink Q4967904.
- Q7885119 wikiPageWikiLink Q5534531.
- Q7885119 wikiPageWikiLink Q5732023.
- Q7885119 wikiPageWikiLink Q598843.
- Q7885119 wikiPageWikiLink Q6105022.
- Q7885119 wikiPageWikiLink Q7076726.
- Q7885119 wikiPageWikiLink Q7090413.
- Q7885119 wikiPageWikiLink Q7100409.
- Q7885119 wikiPageWikiLink Q7100413.
- Q7885119 wikiPageWikiLink Q714886.
- Q7885119 wikiPageWikiLink Q7263851.
- Q7885119 wikiPageWikiLink Q7847922.
- Q7885119 wikiPageWikiLink Q7847923.
- Q7885119 wikiPageWikiLink Q7874246.
- Q7885119 wikiPageWikiLink Q7885120.
- Q7885119 wikiPageWikiLink Q80553.
- Q7885119 wikiPageWikiLink Q8087.
- Q7885119 wikiPageWikiLink Q898670.
- Q7885119 wikiPageWikiLink Q902019.
- Q7885119 wikiPageWikiLink Q9213342.
- Q7885119 comment "In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra which can be considered uniform tilings of the sphere.Most uniform tilings can be made from a Wythoff construction starting with a symmetry group and a singular generator point inside of the fundamental domain.".
- Q7885119 label "Uniform tiling".
- Q7885119 depiction Tiling_Dual_Semiregular_V4-8-8_Tetrakis_Square-2-color-zoom.svg.