Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q7885110> ?p ?o }
Showing triples 1 to 26 of
26
with 100 triples per page.
- Q7885110 subject Q7036089.
- Q7885110 subject Q9225079.
- Q7885110 abstract "In abstract algebra, a module is called a uniform module if the intersection of any two nonzero submodules is nonzero. This is equivalent to saying that every nonzero submodule of M is an essential submodule. A ring may be called a right (left) uniform ring if it is uniform as a right (left) module over itself. Alfred Goldie used the notion of uniform modules to construct a measure of dimension for modules, now known as the uniform dimension (or Goldie dimension) of a module. Uniform dimension generalizes some, but not all, aspects of the notion of the dimension of a vector space. Finite uniform dimension was a key assumption for several theorems by Goldie, including Goldie's theorem, which characterizes which rings are right orders in a semisimple ring. Modules of finite uniform dimension generalize both Artinian modules and Noetherian modules.In the literature, uniform dimension is also referred to as simply the dimension of a module or the rank of a module. Uniform dimension should not be confused with the related notion, also due to Goldie, of the reduced rank of a module.".
- Q7885110 wikiPageWikiLink Q1485102.
- Q7885110 wikiPageWikiLink Q15140185.
- Q7885110 wikiPageWikiLink Q159943.
- Q7885110 wikiPageWikiLink Q17103209.
- Q7885110 wikiPageWikiLink Q1755512.
- Q7885110 wikiPageWikiLink Q176916.
- Q7885110 wikiPageWikiLink Q2375712.
- Q7885110 wikiPageWikiLink Q2444982.
- Q7885110 wikiPageWikiLink Q2525646.
- Q7885110 wikiPageWikiLink Q2563809.
- Q7885110 wikiPageWikiLink Q2603360.
- Q7885110 wikiPageWikiLink Q2716519.
- Q7885110 wikiPageWikiLink Q2919100.
- Q7885110 wikiPageWikiLink Q4440864.
- Q7885110 wikiPageWikiLink Q5580171.
- Q7885110 wikiPageWikiLink Q6034324.
- Q7885110 wikiPageWikiLink Q7036089.
- Q7885110 wikiPageWikiLink Q7449309.
- Q7885110 wikiPageWikiLink Q9225079.
- Q7885110 wikiPageWikiLink Q929302.
- Q7885110 wikiPageWikiLink Q986499.
- Q7885110 comment "In abstract algebra, a module is called a uniform module if the intersection of any two nonzero submodules is nonzero. This is equivalent to saying that every nonzero submodule of M is an essential submodule. A ring may be called a right (left) uniform ring if it is uniform as a right (left) module over itself. Alfred Goldie used the notion of uniform modules to construct a measure of dimension for modules, now known as the uniform dimension (or Goldie dimension) of a module.".
- Q7885110 label "Uniform module".