Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q7595945> ?p ?o }
Showing triples 1 to 54 of
54
with 100 triples per page.
- Q7595945 subject Q7451918.
- Q7595945 subject Q8234760.
- Q7595945 abstract "In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.Descent theory is concerned with generalisations of situations where geometrical objects (such as vector bundles on topological spaces) can be "glued together" when they are isomorphic (in a compatible way) when restricted to intersections of the sets in an open covering of a space. In more general set-up the restrictions are replaced with general pull-backs, and fibred categories form the right framework to discuss the possibility of such gluing. The intuitive meaning of a stack is that it is a fibred category such that "all possible gluings work". The specification of gluings requires a definition of coverings with regard to which the gluings can be considered. It turns out that the general language for describing these coverings is that of a Grothendieck topology. Thus a stack is formally given as a fibred category over another base category, where the base has a Grothendieck topology and where the fibred category satisfies a few axioms that ensure existence and uniqueness of certain gluings with respect to the Grothendieck topology.Stacks are the underlying structure of algebraic stacks (also called Artin stacks) and Deligne–Mumford stacks, which generalize schemes and algebraic spaces and which are particularly useful in studying moduli spaces. There are inclusions: schemes ⊆ algebraic spaces ⊆ Deligne–Mumford stacks ⊆ algebraic stacks ⊆ stacks.Edidin (2003) and Fantechi (2001) give a brief introductory accounts of stacks, Gómez (2001), Olsson (2007) and Vistoli (2005) give more detailed introductions, and Laumon & Moret-Bailly (2000) describes the more advanced theory.".
- Q7595945 wikiPageExternalLink stacks.math.columbia.edu.
- Q7595945 wikiPageExternalLink Stacks.pdf.
- Q7595945 wikiPageExternalLink what-is.pdf.
- Q7595945 wikiPageExternalLink index.php?pr_vo_det&key1=1287&key2=580&no_cache=1.
- Q7595945 wikiPageExternalLink mumford.html.
- Q7595945 wikiPageExternalLink index.html.
- Q7595945 wikiPageExternalLink item?id=MSMF_1964__2__R3_0.
- Q7595945 wikiPageExternalLink item?id=SB_1958-1960__5__299_0.
- Q7595945 wikiPageExternalLink item?id=PMIHES_1969__36__75_0.
- Q7595945 wikiPageWikiLink Q1062242.
- Q7595945 wikiPageWikiLink Q1155772.
- Q7595945 wikiPageWikiLink Q11567.
- Q7595945 wikiPageWikiLink Q118705.
- Q7595945 wikiPageWikiLink Q1368270.
- Q7595945 wikiPageWikiLink Q1377907.
- Q7595945 wikiPageWikiLink Q1397439.
- Q7595945 wikiPageWikiLink Q1417809.
- Q7595945 wikiPageWikiLink Q1548262.
- Q7595945 wikiPageWikiLink Q16783922.
- Q7595945 wikiPageWikiLink Q16955706.
- Q7595945 wikiPageWikiLink Q16960732.
- Q7595945 wikiPageWikiLink Q16966343.
- Q7595945 wikiPageWikiLink Q17097821.
- Q7595945 wikiPageWikiLink Q17099025.
- Q7595945 wikiPageWikiLink Q17099701.
- Q7595945 wikiPageWikiLink Q17103298.
- Q7595945 wikiPageWikiLink Q17103391.
- Q7595945 wikiPageWikiLink Q17126469.
- Q7595945 wikiPageWikiLink Q176916.
- Q7595945 wikiPageWikiLink Q179899.
- Q7595945 wikiPageWikiLink Q1834342.
- Q7595945 wikiPageWikiLink Q189112.
- Q7595945 wikiPageWikiLink Q2013160.
- Q7595945 wikiPageWikiLink Q2042963.
- Q7595945 wikiPageWikiLink Q32229.
- Q7595945 wikiPageWikiLink Q3258885.
- Q7595945 wikiPageWikiLink Q395.
- Q7595945 wikiPageWikiLink Q4724016.
- Q7595945 wikiPageWikiLink Q5263725.
- Q7595945 wikiPageWikiLink Q5446431.
- Q7595945 wikiPageWikiLink Q5457855.
- Q7595945 wikiPageWikiLink Q5469970.
- Q7595945 wikiPageWikiLink Q573901.
- Q7595945 wikiPageWikiLink Q595298.
- Q7595945 wikiPageWikiLink Q658429.
- Q7595945 wikiPageWikiLink Q6889798.
- Q7595945 wikiPageWikiLink Q7451918.
- Q7595945 wikiPageWikiLink Q8234760.
- Q7595945 wikiPageWikiLink Q845677.
- Q7595945 comment "In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets.".
- Q7595945 label "Stack (mathematics)".