Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q7442973> ?p ?o }
Showing triples 1 to 71 of
71
with 100 triples per page.
- Q7442973 subject Q8466140.
- Q7442973 abstract "In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics. It was introduced by David Hilbert and Paul Bernays in their book Grundlagen der Mathematik. The standard axiomatization of second-order arithmetic is denoted Z2.Second-order arithmetic includes, but is significantly stronger than, its first-order counterpart Peano arithmetic. Unlike Peano arithmetic, second-order arithmetic allows quantification over sets of numbers as well as numbers themselves. Because real numbers can be represented as (infinite) sets of natural numbers in well-known ways, and because second order arithmetic allows quantification over such sets, it is possible to formalize the real numbers in second-order arithmetic. For this reason, second-order arithmetic is sometimes called “analysis”.Second-order arithmetic can also be seen as a weak version of set theory in which every element is either a natural number or a set of natural numbers. Although it is much weaker than Zermelo-Fraenkel set theory, second-order arithmetic can prove essentially all of the results of classical mathematics expressible in its language.A subsystem of second-order arithmetic is a theory in the language of second-order arithmetic each axiom of which is a theorem of full second-order arithmetic (Z2). Such subsystems are essential to reverse mathematics, a research program investigating how much of classical mathematics can be derived in certain weak subsystems of varying strength. Much of core mathematics can be formalized in these weak subsystems, some of which are defined below. Reverse mathematics also clarifies the extent and manner in which classical mathematics is nonconstructive.".
- Q7442973 wikiPageExternalLink 2272259.
- Q7442973 wikiPageExternalLink sosoa.
- Q7442973 wikiPageExternalLink Proofs%2BTypes.html.
- Q7442973 wikiPageWikiLink Q1069998.
- Q7442973 wikiPageWikiLink Q1080067.
- Q7442973 wikiPageWikiLink Q1090524.
- Q7442973 wikiPageWikiLink Q11348.
- Q7442973 wikiPageWikiLink Q1166618.
- Q7442973 wikiPageWikiLink Q122318.
- Q7442973 wikiPageWikiLink Q1228944.
- Q7442973 wikiPageWikiLink Q1244890.
- Q7442973 wikiPageWikiLink Q12482.
- Q7442973 wikiPageWikiLink Q12503.
- Q7442973 wikiPageWikiLink Q12916.
- Q7442973 wikiPageWikiLink Q130901.
- Q7442973 wikiPageWikiLink Q1318370.
- Q7442973 wikiPageWikiLink Q134830.
- Q7442973 wikiPageWikiLink Q1548746.
- Q7442973 wikiPageWikiLink Q164307.
- Q7442973 wikiPageWikiLink Q170058.
- Q7442973 wikiPageWikiLink Q176916.
- Q7442973 wikiPageWikiLink Q17736.
- Q7442973 wikiPageWikiLink Q177646.
- Q7442973 wikiPageWikiLink Q179976.
- Q7442973 wikiPageWikiLink Q182003.
- Q7442973 wikiPageWikiLink Q191849.
- Q7442973 wikiPageWikiLink Q2005236.
- Q7442973 wikiPageWikiLink Q201322.
- Q7442973 wikiPageWikiLink Q204.
- Q7442973 wikiPageWikiLink Q205140.
- Q7442973 wikiPageWikiLink Q21199.
- Q7442973 wikiPageWikiLink Q213363.
- Q7442973 wikiPageWikiLink Q217847.
- Q7442973 wikiPageWikiLink Q2548234.
- Q7442973 wikiPageWikiLink Q2552799.
- Q7442973 wikiPageWikiLink Q3044470.
- Q7442973 wikiPageWikiLink Q32043.
- Q7442973 wikiPageWikiLink Q40276.
- Q7442973 wikiPageWikiLink Q4055684.
- Q7442973 wikiPageWikiLink Q41585.
- Q7442973 wikiPageWikiLink Q4830557.
- Q7442973 wikiPageWikiLink Q50701.
- Q7442973 wikiPageWikiLink Q5128339.
- Q7442973 wikiPageWikiLink Q5270518.
- Q7442973 wikiPageWikiLink Q5384443.
- Q7442973 wikiPageWikiLink Q5612089.
- Q7442973 wikiPageWikiLink Q592911.
- Q7442973 wikiPageWikiLink Q6128725.
- Q7442973 wikiPageWikiLink Q655328.
- Q7442973 wikiPageWikiLink Q7100782.
- Q7442973 wikiPageWikiLink Q7137494.
- Q7442973 wikiPageWikiLink Q7168098.
- Q7442973 wikiPageWikiLink Q7243580.
- Q7442973 wikiPageWikiLink Q7632653.
- Q7442973 wikiPageWikiLink Q773483.
- Q7442973 wikiPageWikiLink Q7754.
- Q7442973 wikiPageWikiLink Q7885143.
- Q7442973 wikiPageWikiLink Q795052.
- Q7442973 wikiPageWikiLink Q803931.
- Q7442973 wikiPageWikiLink Q833585.
- Q7442973 wikiPageWikiLink Q842755.
- Q7442973 wikiPageWikiLink Q8466140.
- Q7442973 wikiPageWikiLink Q873653.
- Q7442973 wikiPageWikiLink Q912887.
- Q7442973 wikiPageWikiLink Q928884.
- Q7442973 wikiPageWikiLink Q935944.
- Q7442973 wikiPageWikiLink Q956059.
- Q7442973 comment "In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics. It was introduced by David Hilbert and Paul Bernays in their book Grundlagen der Mathematik.".
- Q7442973 label "Second-order arithmetic".