Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q734737> ?p ?o }
Showing triples 1 to 78 of
78
with 100 triples per page.
- Q734737 subject Q5926373.
- Q734737 subject Q6480776.
- Q734737 subject Q8551789.
- Q734737 subject Q8646049.
- Q734737 subject Q8792032.
- Q734737 abstract "Non-uniform rational basis spline (NURBS) is a mathematical model commonly used in computer graphics for generating and representing curves and surfaces. It offers great flexibility and precision for handling both analytic (surfaces defined by common mathematical formulae) and modeled shapes. NURBS are commonly used in computer-aided design (CAD), manufacturing (CAM), and engineering (CAE) and are part of numerous industry wide standards, such as IGES, STEP, ACIS, and PHIGS. NURBS tools are also found in various 3D modelling and animation software packages.They can be efficiently handled by the computer programs and yet allow for easy human interaction. NURBS surfaces are functions of two parameters mapping to a surface in three-dimensional space. The shape of the surface is determined by control points. NURBS surfaces can represent, in a compact form, simple geometrical shapes. T-splines and subdivision surfaces are more suitable for complex organic shapes because they reduce the number of control points twofold in comparison with the NURBS surfaces.In general, editing NURBS curves and surfaces is highly intuitive and predictable. Control points are always either connected directly to the curve/surface, or act as if they were connected by a rubber band. Depending on the type of user interface, editing can be realized via an element’s control points, which are most obvious and common for Bézier curves, or via higher level tools such as spline modeling or hierarchical editing.".
- Q734737 thumbnail NURBstatic.svg?width=300.
- Q734737 wikiPageExternalLink NURBS-en.swf.
- Q734737 wikiPageExternalLink nurbs.html.
- Q734737 wikiPageExternalLink NURBS.
- Q734737 wikiPageExternalLink tinyspline.
- Q734737 wikiPageWikiLink Q103896.
- Q734737 wikiPageWikiLink Q104555.
- Q734737 wikiPageWikiLink Q1050567.
- Q734737 wikiPageWikiLink Q11425.
- Q734737 wikiPageWikiLink Q1163016.
- Q734737 wikiPageWikiLink Q124255.
- Q734737 wikiPageWikiLink Q1289248.
- Q734737 wikiPageWikiLink Q1396450.
- Q734737 wikiPageWikiLink Q142.
- Q734737 wikiPageWikiLink Q1430640.
- Q734737 wikiPageWikiLink Q1520657.
- Q734737 wikiPageWikiLink Q1529124.
- Q734737 wikiPageWikiLink Q170058.
- Q734737 wikiPageWikiLink Q17082433.
- Q734737 wikiPageWikiLink Q178377.
- Q734737 wikiPageWikiLink Q184793.
- Q734737 wikiPageWikiLink Q188211.
- Q734737 wikiPageWikiLink Q188444.
- Q734737 wikiPageWikiLink Q1899648.
- Q734737 wikiPageWikiLink Q192521.
- Q734737 wikiPageWikiLink Q2044144.
- Q734737 wikiPageWikiLink Q204984.
- Q734737 wikiPageWikiLink Q2083109.
- Q734737 wikiPageWikiLink Q214728.
- Q734737 wikiPageWikiLink Q214881.
- Q734737 wikiPageWikiLink Q229371.
- Q734737 wikiPageWikiLink Q2712771.
- Q734737 wikiPageWikiLink Q272597.
- Q734737 wikiPageWikiLink Q302726.
- Q734737 wikiPageWikiLink Q3456889.
- Q734737 wikiPageWikiLink Q372584.
- Q734737 wikiPageWikiLink Q382497.
- Q734737 wikiPageWikiLink Q43260.
- Q734737 wikiPageWikiLink Q4440864.
- Q734737 wikiPageWikiLink Q444148.
- Q734737 wikiPageWikiLink Q484298.
- Q734737 wikiPageWikiLink Q4845825.
- Q734737 wikiPageWikiLink Q51985.
- Q734737 wikiPageWikiLink Q5244271.
- Q734737 wikiPageWikiLink Q537974.
- Q734737 wikiPageWikiLink Q565573.
- Q734737 wikiPageWikiLink Q568742.
- Q734737 wikiPageWikiLink Q5926373.
- Q734737 wikiPageWikiLink Q611705.
- Q734737 wikiPageWikiLink Q616714.
- Q734737 wikiPageWikiLink Q619942.
- Q734737 wikiPageWikiLink Q623459.
- Q734737 wikiPageWikiLink Q62932.
- Q734737 wikiPageWikiLink Q6480776.
- Q734737 wikiPageWikiLink Q660192.
- Q734737 wikiPageWikiLink Q6686.
- Q734737 wikiPageWikiLink Q6746.
- Q734737 wikiPageWikiLink Q7295771.
- Q734737 wikiPageWikiLink Q735256.
- Q734737 wikiPageWikiLink Q7600677.
- Q734737 wikiPageWikiLink Q7667854.
- Q734737 wikiPageWikiLink Q783507.
- Q734737 wikiPageWikiLink Q8366.
- Q734737 wikiPageWikiLink Q8551789.
- Q734737 wikiPageWikiLink Q8646049.
- Q734737 wikiPageWikiLink Q868473.
- Q734737 wikiPageWikiLink Q8792032.
- Q734737 wikiPageWikiLink Q926066.
- Q734737 wikiPageWikiLink Q976981.
- Q734737 comment "Non-uniform rational basis spline (NURBS) is a mathematical model commonly used in computer graphics for generating and representing curves and surfaces. It offers great flexibility and precision for handling both analytic (surfaces defined by common mathematical formulae) and modeled shapes. NURBS are commonly used in computer-aided design (CAD), manufacturing (CAM), and engineering (CAE) and are part of numerous industry wide standards, such as IGES, STEP, ACIS, and PHIGS.".
- Q734737 label "Non-uniform rational B-spline".
- Q734737 depiction NURBstatic.svg.