Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q7261159> ?p ?o }
Showing triples 1 to 25 of
25
with 100 triples per page.
- Q7261159 subject Q9225079.
- Q7261159 abstract "In mathematics, especially in the field of module theory, the concept of pure submodule provides a generalization of direct summand, a type of particularly well-behaved piece of a module. Pure modules are complementary to flat modules and generalize Prüfer's notion of pure subgroups. While flat modules are those modules which leave short exact sequences exact after tensoring, a pure submodule defines a short exact sequence that remains exact after tensoring with any module. Similarly a flat module is a direct limit of projective modules, and a pure submodule defines a short exact sequence which is a direct limit of split exact sequences, each defined by a direct summand.".
- Q7261159 thumbnail Short_exact_sequence_ABC.png?width=300.
- Q7261159 wikiPageWikiLink Q1163016.
- Q7261159 wikiPageWikiLink Q125977.
- Q7261159 wikiPageWikiLink Q1326955.
- Q7261159 wikiPageWikiLink Q13582243.
- Q7261159 wikiPageWikiLink Q1426191.
- Q7261159 wikiPageWikiLink Q161172.
- Q7261159 wikiPageWikiLink Q176916.
- Q7261159 wikiPageWikiLink Q182003.
- Q7261159 wikiPageWikiLink Q18848.
- Q7261159 wikiPageWikiLink Q190109.
- Q7261159 wikiPageWikiLink Q2757856.
- Q7261159 wikiPageWikiLink Q2895315.
- Q7261159 wikiPageWikiLink Q395.
- Q7261159 wikiPageWikiLink Q44337.
- Q7261159 wikiPageWikiLink Q7261158.
- Q7261159 wikiPageWikiLink Q728435.
- Q7261159 wikiPageWikiLink Q906015.
- Q7261159 wikiPageWikiLink Q9225079.
- Q7261159 wikiPageWikiLink Q942423.
- Q7261159 comment "In mathematics, especially in the field of module theory, the concept of pure submodule provides a generalization of direct summand, a type of particularly well-behaved piece of a module. Pure modules are complementary to flat modules and generalize Prüfer's notion of pure subgroups. While flat modules are those modules which leave short exact sequences exact after tensoring, a pure submodule defines a short exact sequence that remains exact after tensoring with any module.".
- Q7261159 label "Pure submodule".
- Q7261159 depiction Short_exact_sequence_ABC.png.