Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q6787906> ?p ?o }
Showing triples 1 to 28 of
28
with 100 triples per page.
- Q6787906 subject Q8612141.
- Q6787906 abstract "The matroid partitioning problem is a problem arising in the mathematical study of matroids and in the design and analysis of algorithms, in which the goal is to partition the elements of a matroid into as few independent sets as possible. An example is the problem of computing the arboricity of an undirected graph, the minimum number of forests needed to cover all of its edges. Matroid partitioning may be solved in polynomial time, given an independence oracle for the matroid. It may be generalized to show that a matroid sum is itself a matroid, to provide an algorithm for computing ranks and independent sets in matroid sums, and to compute the largest common independent set in the intersection of two given matroids.".
- Q6787906 thumbnail K44_arboricity.svg?width=300.
- Q6787906 wikiPageWikiLink Q1137726.
- Q6787906 wikiPageWikiLink Q1192100.
- Q6787906 wikiPageWikiLink Q1361526.
- Q6787906 wikiPageWikiLink Q141488.
- Q6787906 wikiPageWikiLink Q1415372.
- Q6787906 wikiPageWikiLink Q17086290.
- Q6787906 wikiPageWikiLink Q188276.
- Q6787906 wikiPageWikiLink Q2393193.
- Q6787906 wikiPageWikiLink Q272735.
- Q6787906 wikiPageWikiLink Q3002796.
- Q6787906 wikiPageWikiLink Q383444.
- Q6787906 wikiPageWikiLink Q475603.
- Q6787906 wikiPageWikiLink Q4784907.
- Q6787906 wikiPageWikiLink Q5597099.
- Q6787906 wikiPageWikiLink Q5597156.
- Q6787906 wikiPageWikiLink Q6787903.
- Q6787906 wikiPageWikiLink Q6787905.
- Q6787906 wikiPageWikiLink Q6787908.
- Q6787906 wikiPageWikiLink Q831672.
- Q6787906 wikiPageWikiLink Q8366.
- Q6787906 wikiPageWikiLink Q8612141.
- Q6787906 wikiPageWikiLink Q898572.
- Q6787906 comment "The matroid partitioning problem is a problem arising in the mathematical study of matroids and in the design and analysis of algorithms, in which the goal is to partition the elements of a matroid into as few independent sets as possible. An example is the problem of computing the arboricity of an undirected graph, the minimum number of forests needed to cover all of its edges. Matroid partitioning may be solved in polynomial time, given an independence oracle for the matroid.".
- Q6787906 label "Matroid partitioning".
- Q6787906 depiction K44_arboricity.svg.