Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q5900512> ?p ?o }
Showing triples 1 to 23 of
23
with 100 triples per page.
- Q5900512 subject Q8405593.
- Q5900512 abstract "In complex geometry, a Hopf surface is a compact complex surface obtainedas a quotient of the complex vector space(with zero deleted) C2 \ 0by a free action of a discrete group. If this group is the integers the Hopf surface is called primary, otherwise it is called secondary. (Some authors use the term "Hopf surface" to mean "primary Hopf surface".) The first example was found by Hopf (1948), with the discrete group isomorphic to the integers, with a generator acting on C2 by multiplication by 2; this was the first example of a compact complex surface with no Kähler metric.Higher-dimensional analogues of Hopf surfaces are called Hopf manifolds.".
- Q5900512 wikiPageExternalLink 1200789206.
- Q5900512 wikiPageExternalLink jnlabstract_en.php?cdjournal=jmath1948&cdvol=27&noissue=2&startpage=222.
- Q5900512 wikiPageExternalLink jnlabstract_en.php?cdjournal=jmath1948&cdvol=41&noissue=1&startpage=173.
- Q5900512 wikiPageExternalLink 240.full.pdf+html.
- Q5900512 wikiPageWikiLink Q1146531.
- Q5900512 wikiPageWikiLink Q125977.
- Q5900512 wikiPageWikiLink Q1353916.
- Q5900512 wikiPageWikiLink Q2042963.
- Q5900512 wikiPageWikiLink Q2137810.
- Q5900512 wikiPageWikiLink Q2584390.
- Q5900512 wikiPageWikiLink Q2584927.
- Q5900512 wikiPageWikiLink Q288465.
- Q5900512 wikiPageWikiLink Q333918.
- Q5900512 wikiPageWikiLink Q429593.
- Q5900512 wikiPageWikiLink Q5900503.
- Q5900512 wikiPageWikiLink Q6425087.
- Q5900512 wikiPageWikiLink Q7576696.
- Q5900512 wikiPageWikiLink Q7645998.
- Q5900512 wikiPageWikiLink Q8405593.
- Q5900512 comment "In complex geometry, a Hopf surface is a compact complex surface obtainedas a quotient of the complex vector space(with zero deleted) C2 \ 0by a free action of a discrete group. If this group is the integers the Hopf surface is called primary, otherwise it is called secondary.".
- Q5900512 label "Hopf surface".