Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q5675112> ?p ?o }
Showing triples 1 to 29 of
29
with 100 triples per page.
- Q5675112 subject Q7009970.
- Q5675112 subject Q7139572.
- Q5675112 subject Q8851966.
- Q5675112 abstract "In mathematics, the Hartogs–Rosenthal theorem is a classical result in complex analysis on the uniform approximation of continuous functions on compact subsets of the complex plane by rational functions. The theorem was proved in 1931 by the German mathematicians Friedrich Hartogs and Arthur Rosenthal and has been widely applied, particularly in operator theory.".
- Q5675112 wikiPageExternalLink ?PPN=GDZPPN002274736.
- Q5675112 wikiPageWikiLink Q105005.
- Q5675112 wikiPageWikiLink Q1156903.
- Q5675112 wikiPageWikiLink Q1198874.
- Q5675112 wikiPageWikiLink Q1411887.
- Q5675112 wikiPageWikiLink Q1505529.
- Q5675112 wikiPageWikiLink Q193756.
- Q5675112 wikiPageWikiLink Q1964537.
- Q5675112 wikiPageWikiLink Q3113164.
- Q5675112 wikiPageWikiLink Q328998.
- Q5675112 wikiPageWikiLink Q395.
- Q5675112 wikiPageWikiLink Q41237.
- Q5675112 wikiPageWikiLink Q465654.
- Q5675112 wikiPageWikiLink Q5592049.
- Q5675112 wikiPageWikiLink Q68545.
- Q5675112 wikiPageWikiLink Q7009970.
- Q5675112 wikiPageWikiLink Q703577.
- Q5675112 wikiPageWikiLink Q7139572.
- Q5675112 wikiPageWikiLink Q827230.
- Q5675112 wikiPageWikiLink Q868473.
- Q5675112 wikiPageWikiLink Q8851966.
- Q5675112 wikiPageWikiLink Q913764.
- Q5675112 wikiPageWikiLink Q939927.
- Q5675112 comment "In mathematics, the Hartogs–Rosenthal theorem is a classical result in complex analysis on the uniform approximation of continuous functions on compact subsets of the complex plane by rational functions. The theorem was proved in 1931 by the German mathematicians Friedrich Hartogs and Arthur Rosenthal and has been widely applied, particularly in operator theory.".
- Q5675112 label "Hartogs–Rosenthal theorem".