Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q5295351> ?p ?o }
Showing triples 1 to 29 of
29
with 100 triples per page.
- Q5295351 subject Q10129919.
- Q5295351 subject Q8613711.
- Q5295351 subject Q8802316.
- Q5295351 abstract "In mathematics, Donaldson's theorem states that a definite intersection form of a simply connected smooth manifold of dimension 4 is diagonalisable. If the intersection form is positive (negative) definite, it can be diagonalized to the identity matrix (negative identity matrix) over the integers.".
- Q5295351 wikiPageExternalLink 1214437665.
- Q5295351 wikiPageWikiLink Q10129919.
- Q5295351 wikiPageWikiLink Q1182685.
- Q5295351 wikiPageWikiLink Q1767080.
- Q5295351 wikiPageWikiLink Q193794.
- Q5295351 wikiPageWikiLink Q1957365.
- Q5295351 wikiPageWikiLink Q202906.
- Q5295351 wikiPageWikiLink Q230967.
- Q5295351 wikiPageWikiLink Q2566544.
- Q5295351 wikiPageWikiLink Q2721559.
- Q5295351 wikiPageWikiLink Q2794475.
- Q5295351 wikiPageWikiLink Q333494.
- Q5295351 wikiPageWikiLink Q334039.
- Q5295351 wikiPageWikiLink Q3552958.
- Q5295351 wikiPageWikiLink Q38636.
- Q5295351 wikiPageWikiLink Q395.
- Q5295351 wikiPageWikiLink Q4440864.
- Q5295351 wikiPageWikiLink Q6056717.
- Q5295351 wikiPageWikiLink Q656784.
- Q5295351 wikiPageWikiLink Q736753.
- Q5295351 wikiPageWikiLink Q8613711.
- Q5295351 wikiPageWikiLink Q8802316.
- Q5295351 wikiPageWikiLink Q912058.
- Q5295351 comment "In mathematics, Donaldson's theorem states that a definite intersection form of a simply connected smooth manifold of dimension 4 is diagonalisable. If the intersection form is positive (negative) definite, it can be diagonalized to the identity matrix (negative identity matrix) over the integers.".
- Q5295351 label "Donaldson's theorem".