Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q5166520> ?p ?o }
Showing triples 1 to 56 of
56
with 100 triples per page.
- Q5166520 subject Q7019755.
- Q5166520 abstract "Algorithms that construct convex hulls of various objects have a broad range of applications in mathematics and computer science.In computational geometry, numerous algorithms are proposed for computing the convex hull of a finite set of points, with various computational complexities.Computing the convex hull means that a non-ambiguous and efficient representation of the required convex shape is constructed. The complexity of the corresponding algorithms is usually estimated in terms of n, the number of input points, and h, the number of points on the convex hull.".
- Q5166520 wikiPageExternalLink hull.html.
- Q5166520 wikiPageExternalLink convex-hull-gift-wrapping-method.
- Q5166520 wikiPageExternalLink ConvexHullAlgorithms.
- Q5166520 wikiPageExternalLink 754lects.pdf.
- Q5166520 wikiPageExternalLink hull.html..
- Q5166520 wikiPageExternalLink www.qhull.org.
- Q5166520 wikiPageWikiLink Q1138624.
- Q5166520 wikiPageWikiLink Q1141518.
- Q5166520 wikiPageWikiLink Q1197709.
- Q5166520 wikiPageWikiLink Q13407970.
- Q5166520 wikiPageWikiLink Q175263.
- Q5166520 wikiPageWikiLink Q176916.
- Q5166520 wikiPageWikiLink Q2024396.
- Q5166520 wikiPageWikiLink Q2025538.
- Q5166520 wikiPageWikiLink Q21198.
- Q5166520 wikiPageWikiLink Q2123073.
- Q5166520 wikiPageWikiLink Q2303697.
- Q5166520 wikiPageWikiLink Q2393193.
- Q5166520 wikiPageWikiLink Q2524992.
- Q5166520 wikiPageWikiLink Q269878.
- Q5166520 wikiPageWikiLink Q2718971.
- Q5166520 wikiPageWikiLink Q2990379.
- Q5166520 wikiPageWikiLink Q3064117.
- Q5166520 wikiPageWikiLink Q319913.
- Q5166520 wikiPageWikiLink Q3259505.
- Q5166520 wikiPageWikiLink Q333464.
- Q5166520 wikiPageWikiLink Q36810.
- Q5166520 wikiPageWikiLink Q3772754.
- Q5166520 wikiPageWikiLink Q395.
- Q5166520 wikiPageWikiLink Q4060672.
- Q5166520 wikiPageWikiLink Q4129097.
- Q5166520 wikiPageWikiLink Q48297.
- Q5166520 wikiPageWikiLink Q486598.
- Q5166520 wikiPageWikiLink Q5237772.
- Q5166520 wikiPageWikiLink Q5249246.
- Q5166520 wikiPageWikiLink Q5318961.
- Q5166520 wikiPageWikiLink Q5484589.
- Q5166520 wikiPageWikiLink Q578036.
- Q5166520 wikiPageWikiLink Q644719.
- Q5166520 wikiPageWikiLink Q7019755.
- Q5166520 wikiPageWikiLink Q7104528.
- Q5166520 wikiPageWikiLink Q7112860.
- Q5166520 wikiPageWikiLink Q712620.
- Q5166520 wikiPageWikiLink Q7284410.
- Q5166520 wikiPageWikiLink Q7448393.
- Q5166520 wikiPageWikiLink Q7807368.
- Q5166520 wikiPageWikiLink Q782746.
- Q5166520 wikiPageWikiLink Q874709.
- Q5166520 wikiPageWikiLink Q914780.
- Q5166520 wikiPageWikiLink Q92724.
- Q5166520 wikiPageWikiLink Q92835.
- Q5166520 wikiPageWikiLink Q93028.
- Q5166520 comment "Algorithms that construct convex hulls of various objects have a broad range of applications in mathematics and computer science.In computational geometry, numerous algorithms are proposed for computing the convex hull of a finite set of points, with various computational complexities.Computing the convex hull means that a non-ambiguous and efficient representation of the required convex shape is constructed.".
- Q5166520 label "Convex hull algorithms".