Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q5091194> ?p ?o }
Showing triples 1 to 23 of
23
with 100 triples per page.
- Q5091194 subject Q13296724.
- Q5091194 subject Q16808436.
- Q5091194 abstract "In Riemannian geometry, Cheng's eigenvalue comparison theorem states in general terms that when a domain is large, the first Dirichlet eigenvalue of its Laplace–Beltrami operator is small. This general characterization is not precise, in part because the notion of "size" of the domain must also account for its curvature. The theorem is due to Cheng (1975b). Using geodesic balls, it can be generalized to certain tubular domains (Lee 1990).".
- Q5091194 wikiPageWikiLink Q1071846.
- Q5091194 wikiPageWikiLink Q1135180.
- Q5091194 wikiPageWikiLink Q1195879.
- Q5091194 wikiPageWikiLink Q13296724.
- Q5091194 wikiPageWikiLink Q16808436.
- Q5091194 wikiPageWikiLink Q2076913.
- Q5091194 wikiPageWikiLink Q214881.
- Q5091194 wikiPageWikiLink Q3237377.
- Q5091194 wikiPageWikiLink Q4381552.
- Q5091194 wikiPageWikiLink Q465654.
- Q5091194 wikiPageWikiLink Q5156040.
- Q5091194 wikiPageWikiLink Q5280763.
- Q5091194 wikiPageWikiLink Q6295090.
- Q5091194 wikiPageWikiLink Q632814.
- Q5091194 wikiPageWikiLink Q6786838.
- Q5091194 wikiPageWikiLink Q761383.
- Q5091194 wikiPageWikiLink Q855622.
- Q5091194 wikiPageWikiLink Q912058.
- Q5091194 comment "In Riemannian geometry, Cheng's eigenvalue comparison theorem states in general terms that when a domain is large, the first Dirichlet eigenvalue of its Laplace–Beltrami operator is small. This general characterization is not precise, in part because the notion of "size" of the domain must also account for its curvature. The theorem is due to Cheng (1975b). Using geodesic balls, it can be generalized to certain tubular domains (Lee 1990).".
- Q5091194 label "Cheng's eigenvalue comparison theorem".