Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q5037754> ?p ?o }
Showing triples 1 to 19 of
19
with 100 triples per page.
- Q5037754 subject Q7139572.
- Q5037754 abstract "In mathematics, the Carathéodory kernel theorem is a result in complex analysis and geometric function theory established by the Greek mathematician Constantin Carathéodory in 1912. The uniform convergence on compact sets of a sequence of holomorphic univalent functions, defined on the unit disk in the complex plane and fixing 0, can be formulated purely geometrically in terms of the limiting behaviour of the images of the functions. The kernel theorem has wide application in the theory of univalent functions and in particular provides the geometric basis for the Loewner differential equation.".
- Q5037754 wikiPageWikiLink Q1136043.
- Q5037754 wikiPageWikiLink Q1411887.
- Q5037754 wikiPageWikiLink Q193756.
- Q5037754 wikiPageWikiLink Q207476.
- Q5037754 wikiPageWikiLink Q2390323.
- Q5037754 wikiPageWikiLink Q2608535.
- Q5037754 wikiPageWikiLink Q328998.
- Q5037754 wikiPageWikiLink Q395.
- Q5037754 wikiPageWikiLink Q535366.
- Q5037754 wikiPageWikiLink Q5535485.
- Q5037754 wikiPageWikiLink Q588218.
- Q5037754 wikiPageWikiLink Q65332.
- Q5037754 wikiPageWikiLink Q6666620.
- Q5037754 wikiPageWikiLink Q7139572.
- Q5037754 wikiPageWikiLink Q927051.
- Q5037754 comment "In mathematics, the Carathéodory kernel theorem is a result in complex analysis and geometric function theory established by the Greek mathematician Constantin Carathéodory in 1912. The uniform convergence on compact sets of a sequence of holomorphic univalent functions, defined on the unit disk in the complex plane and fixing 0, can be formulated purely geometrically in terms of the limiting behaviour of the images of the functions.".
- Q5037754 label "Carathéodory kernel theorem".