Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q5034476> ?p ?o }
Showing triples 1 to 23 of
23
with 100 triples per page.
- Q5034476 subject Q8728768.
- Q5034476 abstract "Capacitance–voltage profiling (or C–V profiling, sometimes CV profiling) is a technique for characterizing semiconductor materials and devices. The applied voltage is varied, and the capacitance is measured and plotted as a function of voltage. The technique uses a metal–semiconductor junction (Schottky barrier) or a p–n junction or a MOSFET to create a depletion region, a region which is empty of conducting electrons and holes, but may contain ionized donors and electrically active defects or traps. The depletion region with its ionized charges inside behaves like a capacitor. By varying the voltage applied to the junction it is possible to vary the depletion width. The dependence of the depletion width upon the applied voltage provides information on the semiconductor's internal characteristics, such as its doping profile and electrically active defect densities., Measurements may be done at DC, or using both DC and a small-signal AC signal (the conductance method, ), or using a large-signal transient voltage.Many researchers use capacitance–voltage (C–V) testing to determine semiconductor parameters, particularly in MOSCAP and MOSFET structures. However, C–V measurements are also widely used to characterize other types of semiconductor devices and technologies, including bipolar junction transistors, JFETs, III–V compound devices, photovoltaic cells, MEMS devices, organic thin-film transistor (TFT) displays, photodiodes, and carbon nanotubes (CNTs).These measurements’ fundamental nature makes them applicable to a wide range of research tasks and disciplines. For example, researchers use them in university and semiconductor manufacturers’ labs to evaluate new processes, materials, devices, and circuits. These measurements are extremely valuable to product and yield enhancement engineers who are responsible for improving processes and device performance. Reliability engineers also use these measurements to qualify the suppliers of the materials they use, to monitor process parameters, and to analyze failure mechanisms.A multitude of semiconductor device and material parameters can be derived from C–V measurements with appropriate methodologies, instrumentation, and software. This information is used throughout the semiconductor production chain, and begins with evaluating epitaxially grown crystals, including parameters such as average doping concentration, doping profiles, and carrier lifetimes.C–V measurements can reveal oxide thickness, oxide charges, contamination from mobile ions, and interface trap density in wafer processes. A C–V profile as generated on nanoHUB for bulk MOSFET with different oxide thicknesses. Notice that the red curve indicates low frequency whereas the blue curve illustrates the high-frequency C–V profile. Pay particular attention to the shift in threshold voltage with different oxide thicknesses.These measurements continue to be important after other process steps have been performed, including lithography, etching, cleaning, dielectric and polysilicon depositions, and metallization, among others. Once devices have been fully fabricated, C–V profiling is often used to characterize threshold voltages and other parameters during reliability and basic device testing and to model device performance.C–V measurements are done by using capacitance–voltage meters of Electronic Instrumentation. They are used to analyze the doping profiles of semiconductor devices by the obtained C–V graphs.".
- Q5034476 thumbnail Illustration_of_C-V_measurement.gif?width=300.
- Q5034476 wikiPageExternalLink moscap.
- Q5034476 wikiPageWikiLink Q11426.
- Q5034476 wikiPageWikiLink Q11456.
- Q5034476 wikiPageWikiLink Q164399.
- Q5034476 wikiPageWikiLink Q176282.
- Q5034476 wikiPageWikiLink Q176300.
- Q5034476 wikiPageWikiLink Q1893753.
- Q5034476 wikiPageWikiLink Q210793.
- Q5034476 wikiPageWikiLink Q2225.
- Q5034476 wikiPageWikiLink Q2391942.
- Q5034476 wikiPageWikiLink Q25428.
- Q5034476 wikiPageWikiLink Q288224.
- Q5034476 wikiPageWikiLink Q351558.
- Q5034476 wikiPageWikiLink Q5307910.
- Q5034476 wikiPageWikiLink Q651050.
- Q5034476 wikiPageWikiLink Q6963954.
- Q5034476 wikiPageWikiLink Q8728768.
- Q5034476 comment "Capacitance–voltage profiling (or C–V profiling, sometimes CV profiling) is a technique for characterizing semiconductor materials and devices. The applied voltage is varied, and the capacitance is measured and plotted as a function of voltage.".
- Q5034476 label "Capacitance–voltage profiling".
- Q5034476 depiction Illustration_of_C-V_measurement.gif.