Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q4817582> ?p ?o }
Showing triples 1 to 67 of
67
with 100 triples per page.
- Q4817582 subject Q13296888.
- Q4817582 subject Q8266666.
- Q4817582 subject Q8470619.
- Q4817582 subject Q8549959.
- Q4817582 abstract "In mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition.The FRFT can be used to define fractional convolution, correlation, and other operations, and can also be further generalized into the linear canonical transformation (LCT). An early definition of the FRFT was introduced by Condon, by solving for the Green's function for phase-space rotations, and also by Namias, generalizing work of Wiener on Hermite polynomials.However, it was not widely recognized in signal processing until it was independently reintroduced around 1993 by several groups. Since then, there has been a surge of interest in extending Shannon's sampling theorem for signals which are band-limited in the Fractional Fourier domain.A completely different meaning for "fractional Fourier transform" was introduced by Bailey and Swartztrauber as essentially another name for a z-transform, and in particular for the case that corresponds to a discrete Fourier transform shifted by a fractional amount in frequency space (multiplying the input by a linear chirp) and evaluating at a fractional set of frequency points (e.g. considering only a small portion of the spectrum). (Such transforms can be evaluated efficiently by Bluestein's FFT algorithm.) This terminology has fallen out of use in most of the technical literature, however, in preference to the FRFT. The remainder of this article describes the FRFT.".
- Q4817582 wikiPageExternalLink FractionalFourierTransform.
- Q4817582 wikiPageExternalLink 11.pdf..
- Q4817582 wikiPageExternalLink ltfat.sourceforge.net.
- Q4817582 wikiPageExternalLink ffracft.php.
- Q4817582 wikiPageExternalLink FRFT.
- Q4817582 wikiPageExternalLink tfd.sourceforge.net.
- Q4817582 wikiPageExternalLink wileybook.html.
- Q4817582 wikiPageWikiLink Q11652.
- Q4817582 wikiPageWikiLink Q12503.
- Q4817582 wikiPageWikiLink Q12916.
- Q4817582 wikiPageWikiLink Q1291942.
- Q4817582 wikiPageWikiLink Q13296888.
- Q4817582 wikiPageWikiLink Q135810.
- Q4817582 wikiPageWikiLink Q1477735.
- Q4817582 wikiPageWikiLink Q173142.
- Q4817582 wikiPageWikiLink Q178577.
- Q4817582 wikiPageWikiLink Q186290.
- Q4817582 wikiPageWikiLink Q193442.
- Q4817582 wikiPageWikiLink Q193657.
- Q4817582 wikiPageWikiLink Q1972470.
- Q4817582 wikiPageWikiLink Q207643.
- Q4817582 wikiPageWikiLink Q208163.
- Q4817582 wikiPageWikiLink Q209675.
- Q4817582 wikiPageWikiLink Q210857.
- Q4817582 wikiPageWikiLink Q2122210.
- Q4817582 wikiPageWikiLink Q230967.
- Q4817582 wikiPageWikiLink Q2632017.
- Q4817582 wikiPageWikiLink Q27304.
- Q4817582 wikiPageWikiLink Q2867.
- Q4817582 wikiPageWikiLink Q2878.
- Q4817582 wikiPageWikiLink Q33540.
- Q4817582 wikiPageWikiLink Q378859.
- Q4817582 wikiPageWikiLink Q395.
- Q4817582 wikiPageWikiLink Q43101.
- Q4817582 wikiPageWikiLink Q44363.
- Q4817582 wikiPageWikiLink Q4516253.
- Q4817582 wikiPageWikiLink Q5159443.
- Q4817582 wikiPageWikiLink Q5254619.
- Q4817582 wikiPageWikiLink Q5449227.
- Q4817582 wikiPageWikiLink Q6520159.
- Q4817582 wikiPageWikiLink Q6553419.
- Q4817582 wikiPageWikiLink Q658574.
- Q4817582 wikiPageWikiLink Q6809515.
- Q4817582 wikiPageWikiLink Q7180962.
- Q4817582 wikiPageWikiLink Q7806653.
- Q4817582 wikiPageWikiLink Q782566.
- Q4817582 wikiPageWikiLink Q8068486.
- Q4817582 wikiPageWikiLink Q8266666.
- Q4817582 wikiPageWikiLink Q8470619.
- Q4817582 wikiPageWikiLink Q8549959.
- Q4817582 wikiPageWikiLink Q855949.
- Q4817582 wikiPageWikiLink Q876215.
- Q4817582 wikiPageWikiLink Q877802.
- Q4817582 wikiPageWikiLink Q886077.
- Q4817582 wikiPageWikiLink Q918242.
- Q4817582 wikiPageWikiLink Q93344.
- Q4817582 wikiPageWikiLink Q934367.
- Q4817582 wikiPageWikiLink Q979829.
- Q4817582 type Thing.
- Q4817582 comment "In mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency.".
- Q4817582 label "Fractional Fourier transform".
- Q4817582 seeAlso Q5532423.