Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q4791120> ?p ?o }
Showing triples 1 to 23 of
23
with 100 triples per page.
- Q4791120 subject Q8372791.
- Q4791120 abstract "In computational complexity theory, arithmetic circuits are the standard model for computing polynomials. Informally, an arithmetic circuit takes as inputs either variables or numbers, and is allowed to either add or multiply two expressions it already computed. Arithmetic circuits give us a formal way for understanding the complexity of computing polynomials. The basic type of question in this line of research is `what is the most efficient way for computing a given polynomial f?'.".
- Q4791120 thumbnail ArithmeticCircuit.svg?width=300.
- Q4791120 wikiPageWikiLink Q1049914.
- Q4791120 wikiPageWikiLink Q1137726.
- Q4791120 wikiPageWikiLink Q1195339.
- Q4791120 wikiPageWikiLink Q1344007.
- Q4791120 wikiPageWikiLink Q176916.
- Q4791120 wikiPageWikiLink Q178546.
- Q4791120 wikiPageWikiLink Q186475.
- Q4791120 wikiPageWikiLink Q190109.
- Q4791120 wikiPageWikiLink Q205084.
- Q4791120 wikiPageWikiLink Q272735.
- Q4791120 wikiPageWikiLink Q346228.
- Q4791120 wikiPageWikiLink Q43260.
- Q4791120 wikiPageWikiLink Q65212.
- Q4791120 wikiPageWikiLink Q6934739.
- Q4791120 wikiPageWikiLink Q746242.
- Q4791120 wikiPageWikiLink Q8372791.
- Q4791120 wikiPageWikiLink Q837479.
- Q4791120 comment "In computational complexity theory, arithmetic circuits are the standard model for computing polynomials. Informally, an arithmetic circuit takes as inputs either variables or numbers, and is allowed to either add or multiply two expressions it already computed. Arithmetic circuits give us a formal way for understanding the complexity of computing polynomials. The basic type of question in this line of research is `what is the most efficient way for computing a given polynomial f?'.".
- Q4791120 label "Arithmetic circuit complexity".
- Q4791120 depiction ArithmeticCircuit.svg.