Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q4504202> ?p ?o }
Showing triples 1 to 26 of
26
with 100 triples per page.
- Q4504202 subject Q5625903.
- Q4504202 abstract "In mathematics, the center manifold of an equilibrium point of a dynamical system consists of orbits whose behavior around the equilibrium point is not controlled by either the attraction of the stable manifold or the repulsion of the unstable manifold. The first step when studying equilibrium points of dynamical systems is to linearize the system. The eigenvectors corresponding to eigenvalues with negative real part form the stable eigenspace, which gives rise to the stable manifold. Similarly, eigenvalues with positive real part yield the unstable manifold.This concludes the story if the equilibrium point is hyperbolic (i.e., all eigenvalues of the linearization have nonzero real part). However, if there are eigenvalues whose real part is zero, then these give rise to the center manifold. If the eigenvalues are precisely zero, rather than just real part being zero, then these more specifically give rise to a slow manifold. The behavior on the center (slow) manifold is generally not determined by the linearization and thus is more difficult to study.Center manifolds play an important role in: bifurcation theory because interesting behavior takes place on the center manifold; and multiscale mathematics because the long time dynamics often are attracted to a relatively simple center manifold.".
- Q4504202 thumbnail Saddle-node_phase_portrait_with_central_manifold.svg?width=300.
- Q4504202 wikiPageExternalLink gencm.php.
- Q4504202 wikiPageExternalLink sdenf.php.
- Q4504202 wikiPageExternalLink sdesm.php.
- Q4504202 wikiPageWikiLink Q1152398.
- Q4504202 wikiPageWikiLink Q1154357.
- Q4504202 wikiPageWikiLink Q176916.
- Q4504202 wikiPageWikiLink Q190524.
- Q4504202 wikiPageWikiLink Q2146125.
- Q4504202 wikiPageWikiLink Q2648729.
- Q4504202 wikiPageWikiLink Q2706744.
- Q4504202 wikiPageWikiLink Q3554830.
- Q4504202 wikiPageWikiLink Q3925833.
- Q4504202 wikiPageWikiLink Q4200516.
- Q4504202 wikiPageWikiLink Q531126.
- Q4504202 wikiPageWikiLink Q5625903.
- Q4504202 wikiPageWikiLink Q638328.
- Q4504202 wikiPageWikiLink Q6935072.
- Q4504202 wikiPageWikiLink Q7542110.
- Q4504202 wikiPageWikiLink Q827674.
- Q4504202 wikiPageWikiLink Q970767.
- Q4504202 comment "In mathematics, the center manifold of an equilibrium point of a dynamical system consists of orbits whose behavior around the equilibrium point is not controlled by either the attraction of the stable manifold or the repulsion of the unstable manifold. The first step when studying equilibrium points of dynamical systems is to linearize the system. The eigenvectors corresponding to eigenvalues with negative real part form the stable eigenspace, which gives rise to the stable manifold.".
- Q4504202 label "Center manifold".
- Q4504202 depiction Saddle-node_phase_portrait_with_central_manifold.svg.