Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q4307303> ?p ?o }
Showing triples 1 to 59 of
59
with 100 triples per page.
- Q4307303 subject Q10185811.
- Q4307303 subject Q8647012.
- Q4307303 abstract "In graph theory, the Möbius ladder Mn is a cubic circulant graph with an even number n of vertices, formed from an n-cycle by adding edges (called "rungs") connecting opposite pairs of vertices in the cycle. It is so-named because (with the exception of M6 = K3,3) Mn has exactly n/2 4-cycles which link together by their shared edges to form a topological Möbius strip. Möbius ladders were named and first studied by Guy and Harary (1967).".
- Q4307303 thumbnail Moebius-ladder-16.svg?width=300.
- Q4307303 wikiPageExternalLink ipco01.ps.
- Q4307303 wikiPageExternalLink Moebius-ladder-16-animated.svg.
- Q4307303 wikiPageExternalLink moebius.pdf.
- Q4307303 wikiPageWikiLink Q10185811.
- Q4307303 wikiPageWikiLink Q124131.
- Q4307303 wikiPageWikiLink Q12510.
- Q4307303 wikiPageWikiLink Q131476.
- Q4307303 wikiPageWikiLink Q1374495.
- Q4307303 wikiPageWikiLink Q1457329.
- Q4307303 wikiPageWikiLink Q1475760.
- Q4307303 wikiPageWikiLink Q1512771.
- Q4307303 wikiPageWikiLink Q15284723.
- Q4307303 wikiPageWikiLink Q15759553.
- Q4307303 wikiPageWikiLink Q174733.
- Q4307303 wikiPageWikiLink Q202843.
- Q4307303 wikiPageWikiLink Q2054395.
- Q4307303 wikiPageWikiLink Q21198.
- Q4307303 wikiPageWikiLink Q220997.
- Q4307303 wikiPageWikiLink Q226843.
- Q4307303 wikiPageWikiLink Q2284414.
- Q4307303 wikiPageWikiLink Q230967.
- Q4307303 wikiPageWikiLink Q23638.
- Q4307303 wikiPageWikiLink Q266775.
- Q4307303 wikiPageWikiLink Q3115543.
- Q4307303 wikiPageWikiLink Q3115609.
- Q4307303 wikiPageWikiLink Q3186905.
- Q4307303 wikiPageWikiLink Q3847026.
- Q4307303 wikiPageWikiLink Q465654.
- Q4307303 wikiPageWikiLink Q4779442.
- Q4307303 wikiPageWikiLink Q5030309.
- Q4307303 wikiPageWikiLink Q504843.
- Q4307303 wikiPageWikiLink Q5121633.
- Q4307303 wikiPageWikiLink Q512897.
- Q4307303 wikiPageWikiLink Q5134410.
- Q4307303 wikiPageWikiLink Q5282038.
- Q4307303 wikiPageWikiLink Q547823.
- Q4307303 wikiPageWikiLink Q6042592.
- Q4307303 wikiPageWikiLink Q622506.
- Q4307303 wikiPageWikiLink Q6469318.
- Q4307303 wikiPageWikiLink Q6786839.
- Q4307303 wikiPageWikiLink Q703577.
- Q4307303 wikiPageWikiLink Q7390256.
- Q4307303 wikiPageWikiLink Q740970.
- Q4307303 wikiPageWikiLink Q747980.
- Q4307303 wikiPageWikiLink Q7524131.
- Q4307303 wikiPageWikiLink Q7857002.
- Q4307303 wikiPageWikiLink Q831672.
- Q4307303 wikiPageWikiLink Q835614.
- Q4307303 wikiPageWikiLink Q8647012.
- Q4307303 wikiPageWikiLink Q905837.
- Q4307303 wikiPageWikiLink Q913598.
- Q4307303 wikiPageWikiLink Q958394.
- Q4307303 comment "In graph theory, the Möbius ladder Mn is a cubic circulant graph with an even number n of vertices, formed from an n-cycle by adding edges (called "rungs") connecting opposite pairs of vertices in the cycle. It is so-named because (with the exception of M6 = K3,3) Mn has exactly n/2 4-cycles which link together by their shared edges to form a topological Möbius strip. Möbius ladders were named and first studied by Guy and Harary (1967).".
- Q4307303 label "Möbius ladder".
- Q4307303 depiction Moebius-ladder-16.svg.