Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q3983977> ?p ?o }
Showing triples 1 to 17 of
17
with 100 triples per page.
- Q3983977 abstract "Open mapping theorem may refer to: Open mapping theorem (functional analysis) or Banach–Schauder theorem states that a surjective continuous linear transformation of a Banach space X onto a Banach space Y is an open mapping Open mapping theorem (complex analysis) states that a non-constant holomorphic function on a connected open set in the complex plane is an open mapping Open mapping theorem (topological groups) states that a surjective continuous homomorphism of a locally compact Hausdorff group G onto a locally compact Hausdorff group H is an open mapping if G is σ-compact. Like the open mapping theorem in functional analysis, the proof in the setting of topological groups uses the Baire category theorem.__DISAMBIG__".
- Q3983977 wikiPageWikiLink Q1046291.
- Q3983977 wikiPageWikiLink Q1052678.
- Q3983977 wikiPageWikiLink Q1091024.
- Q3983977 wikiPageWikiLink Q190549.
- Q3983977 wikiPageWikiLink Q194397.
- Q3983977 wikiPageWikiLink Q207476.
- Q3983977 wikiPageWikiLink Q213363.
- Q3983977 wikiPageWikiLink Q215111.
- Q3983977 wikiPageWikiLink Q229102.
- Q3983977 wikiPageWikiLink Q2632649.
- Q3983977 wikiPageWikiLink Q326908.
- Q3983977 wikiPageWikiLink Q328998.
- Q3983977 wikiPageWikiLink Q944297.
- Q3983977 wikiPageWikiLink Q967972.
- Q3983977 comment "Open mapping theorem may refer to: Open mapping theorem (functional analysis) or Banach–Schauder theorem states that a surjective continuous linear transformation of a Banach space X onto a Banach space Y is an open mapping Open mapping theorem (complex analysis) states that a non-constant holomorphic function on a connected open set in the complex plane is an open mapping Open mapping theorem (topological groups) states that a surjective continuous homomorphism of a locally compact Hausdorff group G onto a locally compact Hausdorff group H is an open mapping if G is σ-compact. ".
- Q3983977 label "Open mapping theorem".