Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q3358290> ?p ?o }
Showing triples 1 to 86 of
86
with 100 triples per page.
- Q3358290 subject Q6418756.
- Q3358290 subject Q6482775.
- Q3358290 subject Q7035965.
- Q3358290 subject Q7237020.
- Q3358290 subject Q7331890.
- Q3358290 subject Q8728393.
- Q3358290 abstract "In geometry, a pyramid is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face. It is a conic solid with polygonal base. A pyramid with an n-sided base will have n + 1 vertices, n + 1 faces, and 2n edges. All pyramids are self-dual.A right pyramid has its apex directly above the centroid of its base. Nonright pyramids are called oblique pyramids. A regular pyramid has a regular polygon base and is usually implied to be a right pyramid. When unspecified, a pyramid is usually assumed to be a regular square pyramid, like the physical pyramid structures. A triangle-based is more often called a tetrahedron.Among oblique pyramids, like acute and obtuse triangles, a pyramid can be called acute if its apex above the interior of the base, and obtuse if its apex above the exterior of the base. A right-angled pyramid has its apex above an edge or vertex of the base. In a tetrahedron these qualifiers will change based on which face is considered the base.Pyramids are a subclass of the prismatoids. Pyramids can be doubled into bipyramid by adding a second offset point on the other side of the base plane.".
- Q3358290 thumbnail Pyramid.svg?width=300.
- Q3358290 wikiPageExternalLink unipoly.
- Q3358290 wikiPageWikiLink Q1053857.
- Q3358290 wikiPageWikiLink Q1059659.
- Q3358290 wikiPageWikiLink Q10615255.
- Q3358290 wikiPageWikiLink Q1075704.
- Q3358290 wikiPageWikiLink Q11063.
- Q3358290 wikiPageWikiLink Q11359.
- Q3358290 wikiPageWikiLink Q11500.
- Q3358290 wikiPageWikiLink Q1154761.
- Q3358290 wikiPageWikiLink Q1193827.
- Q3358290 wikiPageWikiLink Q12507.
- Q3358290 wikiPageWikiLink Q12516.
- Q3358290 wikiPageWikiLink Q1279571.
- Q3358290 wikiPageWikiLink Q1292962.
- Q3358290 wikiPageWikiLink Q131251.
- Q3358290 wikiPageWikiLink Q1347011.
- Q3358290 wikiPageWikiLink Q1379273.
- Q3358290 wikiPageWikiLink Q157002.
- Q3358290 wikiPageWikiLink Q160003.
- Q3358290 wikiPageWikiLink Q1634717.
- Q3358290 wikiPageWikiLink Q16953147.
- Q3358290 wikiPageWikiLink Q170790.
- Q3358290 wikiPageWikiLink Q17099514.
- Q3358290 wikiPageWikiLink Q17285.
- Q3358290 wikiPageWikiLink Q172937.
- Q3358290 wikiPageWikiLink Q1757451.
- Q3358290 wikiPageWikiLink Q1783179.
- Q3358290 wikiPageWikiLink Q18207969.
- Q3358290 wikiPageWikiLink Q182186.
- Q3358290 wikiPageWikiLink Q18350116.
- Q3358290 wikiPageWikiLink Q188745.
- Q3358290 wikiPageWikiLink Q188884.
- Q3358290 wikiPageWikiLink Q191145.
- Q3358290 wikiPageWikiLink Q19821.
- Q3358290 wikiPageWikiLink Q2004228.
- Q3358290 wikiPageWikiLink Q205034.
- Q3358290 wikiPageWikiLink Q2076140.
- Q3358290 wikiPageWikiLink Q2079948.
- Q3358290 wikiPageWikiLink Q209.
- Q3358290 wikiPageWikiLink Q2155148.
- Q3358290 wikiPageWikiLink Q26382.
- Q3358290 wikiPageWikiLink Q26401.
- Q3358290 wikiPageWikiLink Q28474.
- Q3358290 wikiPageWikiLink Q2858200.
- Q3358290 wikiPageWikiLink Q3064117.
- Q3358290 wikiPageWikiLink Q331350.
- Q3358290 wikiPageWikiLink Q3358290.
- Q3358290 wikiPageWikiLink Q3518429.
- Q3358290 wikiPageWikiLink Q37555.
- Q3358290 wikiPageWikiLink Q3847020.
- Q3358290 wikiPageWikiLink Q39297.
- Q3358290 wikiPageWikiLink Q41159.
- Q3358290 wikiPageWikiLink Q42344.
- Q3358290 wikiPageWikiLink Q4639677.
- Q3358290 wikiPageWikiLink Q4779442.
- Q3358290 wikiPageWikiLink Q511093.
- Q3358290 wikiPageWikiLink Q547823.
- Q3358290 wikiPageWikiLink Q6418756.
- Q3358290 wikiPageWikiLink Q6482775.
- Q3358290 wikiPageWikiLink Q6640332.
- Q3358290 wikiPageWikiLink Q7035965.
- Q3358290 wikiPageWikiLink Q714886.
- Q3358290 wikiPageWikiLink Q7237020.
- Q3358290 wikiPageWikiLink Q7254877.
- Q3358290 wikiPageWikiLink Q7331890.
- Q3358290 wikiPageWikiLink Q735071.
- Q3358290 wikiPageWikiLink Q7538676.
- Q3358290 wikiPageWikiLink Q8087.
- Q3358290 wikiPageWikiLink Q812880.
- Q3358290 wikiPageWikiLink Q846235.
- Q3358290 wikiPageWikiLink Q8728393.
- Q3358290 wikiPageWikiLink Q875937.
- Q3358290 wikiPageWikiLink Q909847.
- Q3358290 type Thing.
- Q3358290 comment "In geometry, a pyramid is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face. It is a conic solid with polygonal base. A pyramid with an n-sided base will have n + 1 vertices, n + 1 faces, and 2n edges. All pyramids are self-dual.A right pyramid has its apex directly above the centroid of its base. Nonright pyramids are called oblique pyramids.".
- Q3358290 label "Pyramid (geometry)".
- Q3358290 seeAlso Q42344.
- Q3358290 depiction Pyramid.svg.