Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q2993338> ?p ?o }
Showing triples 1 to 34 of
34
with 100 triples per page.
- Q2993338 subject Q6248542.
- Q2993338 subject Q8480477.
- Q2993338 subject Q8732951.
- Q2993338 abstract "In combinatorial mathematics, the union-closed sets conjecture is an elementary problem, posed by Péter Frankl in 1979 and still open. A family of sets is said to be union-closed if the union of any two sets from the family remains in the family. The conjecture states that for any finite union-closed family of finite sets, other than the family consisting only of the empty set, there exists an element that belongs to at least half of the sets in the family.".
- Q2993338 wikiPageExternalLink TheUnion-closedSetsConjAJCversion.pdf.
- Q2993338 wikiPageExternalLink v15i1r88.html.
- Q2993338 wikiPageExternalLink frankls_union_closed_sets_conjecture.
- Q2993338 wikiPageExternalLink index.html.
- Q2993338 wikiPageExternalLink unionclos.html.
- Q2993338 wikiPageWikiLink Q1060343.
- Q2993338 wikiPageWikiLink Q131476.
- Q2993338 wikiPageWikiLink Q141488.
- Q2993338 wikiPageWikiLink Q15284723.
- Q2993338 wikiPageWikiLink Q174733.
- Q2993338 wikiPageWikiLink Q226183.
- Q2993338 wikiPageWikiLink Q242767.
- Q2993338 wikiPageWikiLink Q3050606.
- Q2993338 wikiPageWikiLink Q3186905.
- Q2993338 wikiPageWikiLink Q383444.
- Q2993338 wikiPageWikiLink Q474715.
- Q2993338 wikiPageWikiLink Q4973304.
- Q2993338 wikiPageWikiLink Q5412712.
- Q2993338 wikiPageWikiLink Q595364.
- Q2993338 wikiPageWikiLink Q6097339.
- Q2993338 wikiPageWikiLink Q6248542.
- Q2993338 wikiPageWikiLink Q718082.
- Q2993338 wikiPageWikiLink Q739925.
- Q2993338 wikiPageWikiLink Q7454787.
- Q2993338 wikiPageWikiLink Q76592.
- Q2993338 wikiPageWikiLink Q7888149.
- Q2993338 wikiPageWikiLink Q8480477.
- Q2993338 wikiPageWikiLink Q8732951.
- Q2993338 comment "In combinatorial mathematics, the union-closed sets conjecture is an elementary problem, posed by Péter Frankl in 1979 and still open. A family of sets is said to be union-closed if the union of any two sets from the family remains in the family. The conjecture states that for any finite union-closed family of finite sets, other than the family consisting only of the empty set, there exists an element that belongs to at least half of the sets in the family.".
- Q2993338 label "Union-closed sets conjecture".