Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q2893695> ?p ?o }
Showing triples 1 to 82 of
82
with 100 triples per page.
- Q2893695 subject Q8234760.
- Q2893695 subject Q8399470.
- Q2893695 abstract "In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class. and yet they are well-understood in many ways.They are named for Francis Sowerby Macaulay (1916), who proved the unmixedness theorem for polynomial rings, and for Irvin Cohen (1946), who proved the unmixedness theorem for formal power series rings. All Cohen–Macaulay rings have the unmixedness property.For Noetherian local rings, there is the following chain of inclusions. Universally catenary rings ⊃ Cohen–Macaulay rings ⊃ Gorenstein rings ⊃ complete intersection rings ⊃ regular local rings".
- Q2893695 wikiPageExternalLink 1990313.
- Q2893695 wikiPageWikiLink Q1003025.
- Q2893695 wikiPageWikiLink Q1006450.
- Q2893695 wikiPageWikiLink Q11095962.
- Q2893695 wikiPageWikiLink Q1142704.
- Q2893695 wikiPageWikiLink Q1154351.
- Q2893695 wikiPageWikiLink Q1155772.
- Q2893695 wikiPageWikiLink Q1203540.
- Q2893695 wikiPageWikiLink Q1225713.
- Q2893695 wikiPageWikiLink Q1287074.
- Q2893695 wikiPageWikiLink Q1292333.
- Q2893695 wikiPageWikiLink Q1341061.
- Q2893695 wikiPageWikiLink Q1356332.
- Q2893695 wikiPageWikiLink Q1426191.
- Q2893695 wikiPageWikiLink Q1455652.
- Q2893695 wikiPageWikiLink Q1491995.
- Q2893695 wikiPageWikiLink Q1509762.
- Q2893695 wikiPageWikiLink Q1528306.
- Q2893695 wikiPageWikiLink Q15534632.
- Q2893695 wikiPageWikiLink Q165474.
- Q2893695 wikiPageWikiLink Q1708210.
- Q2893695 wikiPageWikiLink Q176916.
- Q2893695 wikiPageWikiLink Q180969.
- Q2893695 wikiPageWikiLink Q18393924.
- Q2893695 wikiPageWikiLink Q190109.
- Q2893695 wikiPageWikiLink Q21018636.
- Q2893695 wikiPageWikiLink Q2138875.
- Q2893695 wikiPageWikiLink Q224884.
- Q2893695 wikiPageWikiLink Q2370289.
- Q2893695 wikiPageWikiLink Q2375712.
- Q2893695 wikiPageWikiLink Q2379946.
- Q2893695 wikiPageWikiLink Q2835968.
- Q2893695 wikiPageWikiLink Q289093.
- Q2893695 wikiPageWikiLink Q2893695.
- Q2893695 wikiPageWikiLink Q3113164.
- Q2893695 wikiPageWikiLink Q318751.
- Q2893695 wikiPageWikiLink Q3406905.
- Q2893695 wikiPageWikiLink Q3475675.
- Q2893695 wikiPageWikiLink Q3554813.
- Q2893695 wikiPageWikiLink Q3554818.
- Q2893695 wikiPageWikiLink Q3685258.
- Q2893695 wikiPageWikiLink Q395.
- Q2893695 wikiPageWikiLink Q44337.
- Q2893695 wikiPageWikiLink Q4748472.
- Q2893695 wikiPageWikiLink Q4809264.
- Q2893695 wikiPageWikiLink Q5033381.
- Q2893695 wikiPageWikiLink Q5051871.
- Q2893695 wikiPageWikiLink Q5141352.
- Q2893695 wikiPageWikiLink Q5156503.
- Q2893695 wikiPageWikiLink Q5262626.
- Q2893695 wikiPageWikiLink Q5384447.
- Q2893695 wikiPageWikiLink Q5586177.
- Q2893695 wikiPageWikiLink Q5610724.
- Q2893695 wikiPageWikiLink Q5761240.
- Q2893695 wikiPageWikiLink Q582271.
- Q2893695 wikiPageWikiLink Q5875438.
- Q2893695 wikiPageWikiLink Q6042757.
- Q2893695 wikiPageWikiLink Q628792.
- Q2893695 wikiPageWikiLink Q6423024.
- Q2893695 wikiPageWikiLink Q655275.
- Q2893695 wikiPageWikiLink Q6553407.
- Q2893695 wikiPageWikiLink Q6865325.
- Q2893695 wikiPageWikiLink Q713084.
- Q2893695 wikiPageWikiLink Q727659.
- Q2893695 wikiPageWikiLink Q7295783.
- Q2893695 wikiPageWikiLink Q7309617.
- Q2893695 wikiPageWikiLink Q7546431.
- Q2893695 wikiPageWikiLink Q8234760.
- Q2893695 wikiPageWikiLink Q836088.
- Q2893695 wikiPageWikiLink Q8399470.
- Q2893695 wikiPageWikiLink Q858656.
- Q2893695 wikiPageWikiLink Q863912.
- Q2893695 wikiPageWikiLink Q906907.
- Q2893695 wikiPageWikiLink Q912887.
- Q2893695 type Thing.
- Q2893695 comment "In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class.".
- Q2893695 label "Cohen–Macaulay ring".
- Q2893695 differentFrom Q18348203.
- Q2893695 differentFrom Q5141329.