Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q2528773> ?p ?o }
Showing triples 1 to 25 of
25
with 100 triples per page.
- Q2528773 subject Q6181442.
- Q2528773 subject Q8266666.
- Q2528773 subject Q8633377.
- Q2528773 abstract "In mathematics, Costa's minimal surface is an embedded minimal surface discovered in 1982 by the Brazilian mathematician Celso José da Costa. It is also a surface of finite topology, which means that it can be formed by puncturing a compact surface. Topologically, it is a thrice-punctured torus.Until its discovery, the plane, helicoid and the catenoid were believed to be the only embedded minimal surfaces that could be formed by puncturing a compact surface. The Costa surface evolves from a torus, which is deformed until the planar end becomes catenoidal. Defining these surfaces on rectangular tori of arbitrary dimensions yields the Costa surface. Its discovery triggered research and discovery into several new surfaces and open conjectures in topology.The Costa surface can be described using the Weierstrass zeta and the Weierstrass elliptic functions.".
- Q2528773 wikiPageExternalLink CostaMinimalSurface.html.
- Q2528773 wikiPageWikiLink Q1072483.
- Q2528773 wikiPageWikiLink Q11348.
- Q2528773 wikiPageWikiLink Q12510.
- Q2528773 wikiPageWikiLink Q1545397.
- Q2528773 wikiPageWikiLink Q155.
- Q2528773 wikiPageWikiLink Q16337298.
- Q2528773 wikiPageWikiLink Q170790.
- Q2528773 wikiPageWikiLink Q17285.
- Q2528773 wikiPageWikiLink Q1999772.
- Q2528773 wikiPageWikiLink Q2343600.
- Q2528773 wikiPageWikiLink Q3075283.
- Q2528773 wikiPageWikiLink Q319141.
- Q2528773 wikiPageWikiLink Q381892.
- Q2528773 wikiPageWikiLink Q395.
- Q2528773 wikiPageWikiLink Q5375784.
- Q2528773 wikiPageWikiLink Q6181442.
- Q2528773 wikiPageWikiLink Q8266666.
- Q2528773 wikiPageWikiLink Q8633377.
- Q2528773 comment "In mathematics, Costa's minimal surface is an embedded minimal surface discovered in 1982 by the Brazilian mathematician Celso José da Costa. It is also a surface of finite topology, which means that it can be formed by puncturing a compact surface. Topologically, it is a thrice-punctured torus.Until its discovery, the plane, helicoid and the catenoid were believed to be the only embedded minimal surfaces that could be formed by puncturing a compact surface.".
- Q2528773 label "Costa's minimal surface".