Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q217255> ?p ?o }
- Q217255 subject Q6584877.
- Q217255 subject Q7016232.
- Q217255 subject Q7036087.
- Q217255 subject Q7145833.
- Q217255 subject Q7457477.
- Q217255 abstract "In physics, the Lorentz transformation (or transformations) are coordinate transformations between two coordinate frames that move at constant velocity relative to each other.Frames of reference can be divided into two groups, inertial (relative motion with constant velocity) and non-inertial (accelerating in curved paths, rotational motion with constant angular velocity, etc.). The term "Lorentz transformations" only refers to transformations between inertial frames, usually in the context of special relativity.In each reference frame, an observer can use a local coordinate system (most exclusively Cartesian coordinates in this context) to measure lengths, and a clock to measure time intervals. An observer is a real or imaginary entity that can take measurements, say humans, or any other living organism—or even robots and computers. An event is something that happens at a point in space at an instant of time, or more formally a point in spacetime. The transformations connect the space and time coordinates of an event as measured by an observer in each frame.They supersede the Galilean transformation of Newtonian physics, which assumes an absolute space and time (see Galilean relativity). The Galilean transformation is a good approximation only at relative speeds much smaller than the speed of light. Lorentz transformations have a number of unintuitive features that do not appear in Galilean transformations. For example, they reflect the fact that observers moving at different velocities may measure different distances, elapsed times, and even different orderings of events, but always such that the speed of light is the same in all inertial reference frames. The invariance of light speed is one of the postulates of special relativity.Historically, the transformations were the result of attempts by Lorentz and others to explain how the speed of light was observed to be independent of the reference frame, and to understand the symmetries of the laws of electromagnetism. The Lorentz transformation is in accordance with special relativity, but was derived before special relativity. The transformations are named after the Dutch physicist Hendrik Lorentz.The Lorentz transformation is a linear transformation. It may include a rotation of space; a rotation-free Lorentz transformation is called a Lorentz boost. In Minkowski space, the mathematical model of spacetime in special relativity, the Lorentz transformations preserve the spacetime interval between any two events. This property is the defining property of a Lorentz transformation. They describe only the transformations in which the spacetime event at the origin is left fixed. They can be considered as a hyperbolic rotation of Minkowski space. The more general set of transformations that also includes translations is known as the Poincaré group.".
- Q217255 wikiPageExternalLink 211.pdf.
- Q217255 wikiPageExternalLink 200622102452_866.pdf.
- Q217255 wikiPageExternalLink 2up.
- Q217255 wikiPageExternalLink paradox.html.
- Q217255 wikiPageExternalLink view.php?pid=UQ:9560.
- Q217255 wikiPageExternalLink Lorentz_Frames.html.
- Q217255 wikiPageExternalLink warp.
- Q217255 wikiPageExternalLink darrigol2.pdf.
- Q217255 wikiPageExternalLink specrel.
- Q217255 wikiPageExternalLink ch07.html.
- Q217255 wikiPageExternalLink relative.
- Q217255 wikiPageExternalLink 1905_17_891-921.pdf.
- Q217255 wikiPageExternalLink g157304vh4434413.
- Q217255 wikiPageExternalLink Lorentz.pdf.
- Q217255 wikiPageExternalLink v=onepage&q=mcfarlane%201962%20lorentz%20transformation&f=false.
- Q217255 wikiPageExternalLink v=onepage&q=sexl%20relativity&f=false.
- Q217255 wikiPageExternalLink books?id=pEhjQgAACAAJ&dq=Symmetry+in+quantum+mechanics&hl=en&sa=X&redir_esc=y.
- Q217255 wikiPageExternalLink books?id=1SKFQgAACAAJ.
- Q217255 wikiPageExternalLink i9?page=4.
- Q217255 wikiPageWikiLink Q1003216.
- Q217255 wikiPageWikiLink Q10392775.
- Q217255 wikiPageWikiLink Q1049914.
- Q217255 wikiPageWikiLink Q1057996.
- Q217255 wikiPageWikiLink Q1066449.
- Q217255 wikiPageWikiLink Q1068463.
- Q217255 wikiPageWikiLink Q1076013.
- Q217255 wikiPageWikiLink Q1086961.
- Q217255 wikiPageWikiLink Q1097654.
- Q217255 wikiPageWikiLink Q11061828.
- Q217255 wikiPageWikiLink Q1111.
- Q217255 wikiPageWikiLink Q11210.
- Q217255 wikiPageWikiLink Q1136644.
- Q217255 wikiPageWikiLink Q11376.
- Q217255 wikiPageWikiLink Q11379.
- Q217255 wikiPageWikiLink Q11397.
- Q217255 wikiPageWikiLink Q11406.
- Q217255 wikiPageWikiLink Q11408.
- Q217255 wikiPageWikiLink Q1142562.
- Q217255 wikiPageWikiLink Q11455.
- Q217255 wikiPageWikiLink Q11465.
- Q217255 wikiPageWikiLink Q11471.
- Q217255 wikiPageWikiLink Q1151539.
- Q217255 wikiPageWikiLink Q11567.
- Q217255 wikiPageWikiLink Q1163016.
- Q217255 wikiPageWikiLink Q11651.
- Q217255 wikiPageWikiLink Q1190859.
- Q217255 wikiPageWikiLink Q1191722.
- Q217255 wikiPageWikiLink Q12457.
- Q217255 wikiPageWikiLink Q1256564.
- Q217255 wikiPageWikiLink Q125977.
- Q217255 wikiPageWikiLink Q1309317.
- Q217255 wikiPageWikiLink Q131187.
- Q217255 wikiPageWikiLink Q133327.
- Q217255 wikiPageWikiLink Q1334417.
- Q217255 wikiPageWikiLink Q133673.
- Q217255 wikiPageWikiLink Q1366301.
- Q217255 wikiPageWikiLink Q1366833.
- Q217255 wikiPageWikiLink Q141160.
- Q217255 wikiPageWikiLink Q1413083.
- Q217255 wikiPageWikiLink Q1419761.
- Q217255 wikiPageWikiLink Q142270.
- Q217255 wikiPageWikiLink Q14382.
- Q217255 wikiPageWikiLink Q14387.
- Q217255 wikiPageWikiLink Q14390.
- Q217255 wikiPageWikiLink Q14394.
- Q217255 wikiPageWikiLink Q1473494.
- Q217255 wikiPageWikiLink Q1477782.
- Q217255 wikiPageWikiLink Q1479654.
- Q217255 wikiPageWikiLink Q1482183.
- Q217255 wikiPageWikiLink Q15198210.
- Q217255 wikiPageWikiLink Q154345.
- Q217255 wikiPageWikiLink Q154844.
- Q217255 wikiPageWikiLink Q15854269.
- Q217255 wikiPageWikiLink Q161254.
- Q217255 wikiPageWikiLink Q161635.
- Q217255 wikiPageWikiLink Q164307.
- Q217255 wikiPageWikiLink Q165474.
- Q217255 wikiPageWikiLink Q168698.
- Q217255 wikiPageWikiLink Q169470.
- Q217255 wikiPageWikiLink Q17099729.
- Q217255 wikiPageWikiLink Q1715792.
- Q217255 wikiPageWikiLink Q1760062.
- Q217255 wikiPageWikiLink Q177596.
- Q217255 wikiPageWikiLink Q177625.
- Q217255 wikiPageWikiLink Q178546.
- Q217255 wikiPageWikiLink Q181365.
- Q217255 wikiPageWikiLink Q184876.
- Q217255 wikiPageWikiLink Q185359.
- Q217255 wikiPageWikiLink Q185837.
- Q217255 wikiPageWikiLink Q185918.
- Q217255 wikiPageWikiLink Q188524.
- Q217255 wikiPageWikiLink Q189569.
- Q217255 wikiPageWikiLink Q190109.
- Q217255 wikiPageWikiLink Q191884.