Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q211981> ?p ?o }
Showing triples 1 to 23 of
23
with 100 triples per page.
- Q211981 subject Q11157523.
- Q211981 subject Q7139561.
- Q211981 abstract "In mathematics, in the study of dynamical systems, the Hartman–Grobman theorem or linearization theorem is a theorem about the local behaviour of dynamical systems in the neighbourhood of a hyperbolic equilibrium point. It asserts that linearization---our first resort in applications---is unreasonably effective in predicting qualitative patterns of behaviour.The theorem states that the behaviour of a dynamical system in a domain near a hyperbolic equilibrium point is qualitatively the same as the behaviour of its linearization near this equilibrium point, provided that no eigenvalue of the linearization has its real part equal to zero. Therefore, when dealing with such dynamical systems one can use the simpler linearization of the system to analyze its behaviour around equilibria.".
- Q211981 wikiPageExternalLink book-ode.
- Q211981 wikiPageWikiLink Q11157523.
- Q211981 wikiPageWikiLink Q1434290.
- Q211981 wikiPageWikiLink Q1520713.
- Q211981 wikiPageWikiLink Q1537963.
- Q211981 wikiPageWikiLink Q18383.
- Q211981 wikiPageWikiLink Q190524.
- Q211981 wikiPageWikiLink Q202906.
- Q211981 wikiPageWikiLink Q2154043.
- Q211981 wikiPageWikiLink Q2443460.
- Q211981 wikiPageWikiLink Q2478475.
- Q211981 wikiPageWikiLink Q3925833.
- Q211981 wikiPageWikiLink Q395.
- Q211981 wikiPageWikiLink Q465654.
- Q211981 wikiPageWikiLink Q506041.
- Q211981 wikiPageWikiLink Q638328.
- Q211981 wikiPageWikiLink Q7139561.
- Q211981 wikiPageWikiLink Q868473.
- Q211981 comment "In mathematics, in the study of dynamical systems, the Hartman–Grobman theorem or linearization theorem is a theorem about the local behaviour of dynamical systems in the neighbourhood of a hyperbolic equilibrium point.".
- Q211981 label "Hartman–Grobman theorem".