Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q18386550> ?p ?o }
Showing triples 1 to 17 of
17
with 100 triples per page.
- Q18386550 subject Q7139261.
- Q18386550 subject Q8465461.
- Q18386550 abstract "Template:ForIn mathematics, a Cantor algebra, named after Georg Cantor, is one of two closely related Boolean algebras, one countable and one complete.The countable Cantor algebra is the Boolean algebra of all clopen subsets of the Cantor set. This is the free Boolean algebra on a countable number of generators. Up to isomorphism, this is the only nontrivial Boolean algebra that is both countable and atomless.The complete Cantor algebra is the complete Boolean algebra of Borel subsets of the reals modulo meager sets (Balcar & Jech 2006). It is isomorphic to the completion of the countable Cantor algebra. (The complete Cantor algebra is sometimes called the Cohen algebra, though "Cohen algebra" usually refers to a different type of Boolean algebra.) The complete Cantor algebra was studied by von Neumann in 1935 (later published as (von Neumann 1998)), who showed that it is not isomorphic to the random algebra of Borel subsets modulo measure zero sets.".
- Q18386550 wikiPageExternalLink 1202-toc.htm.
- Q18386550 wikiPageExternalLink books?id=onE5HncE-HgC.
- Q18386550 wikiPageWikiLink Q1080067.
- Q18386550 wikiPageWikiLink Q1708210.
- Q18386550 wikiPageWikiLink Q1747745.
- Q18386550 wikiPageWikiLink Q18348203.
- Q18386550 wikiPageWikiLink Q18393451.
- Q18386550 wikiPageWikiLink Q273188.
- Q18386550 wikiPageWikiLink Q7139261.
- Q18386550 wikiPageWikiLink Q743648.
- Q18386550 wikiPageWikiLink Q76420.
- Q18386550 wikiPageWikiLink Q8465461.
- Q18386550 comment "Template:ForIn mathematics, a Cantor algebra, named after Georg Cantor, is one of two closely related Boolean algebras, one countable and one complete.The countable Cantor algebra is the Boolean algebra of all clopen subsets of the Cantor set. This is the free Boolean algebra on a countable number of generators.".
- Q18386550 label "Cantor algebra".