Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q1764144> ?p ?o }
Showing triples 1 to 70 of
70
with 100 triples per page.
- Q1764144 subject Q7007195.
- Q1764144 subject Q7132783.
- Q1764144 subject Q7217255.
- Q1764144 subject Q7481159.
- Q1764144 subject Q7700464.
- Q1764144 abstract "The Steiner tree problem, motorway problem, or minimum Steiner tree problem, named after Jakob Steiner, is a problem in combinatorial optimization, which may be formulated in a number of settings, with the common part being that it is required to find the shortest interconnect for a given set of objects.The Steiner tree problem is superficially similar to the minimum spanning tree problem: given a set V of points (vertices), interconnect them by a network (graph) of shortest length, where the length is the sum of the lengths of all edges. The difference between the Steiner tree problem and the minimum spanning tree problem is that, in the Steiner tree problem, extra intermediate vertices and edges may be added to the graph in order to reduce the length of the spanning tree. These new vertices introduced to decrease the total length of connection are known as Steiner points or Steiner vertices. It has been proved that the resulting connection is a tree, known as the Steiner tree. There may be several Steiner trees for a given set of initial vertices.The Steiner tree problem has applications in circuit layout or network design. Most versions of the Steiner tree problem are NP-complete. In fact, one of these was among Karp's original 21 NP-complete problems. Some restricted cases can be solved in polynomial time. In practice, heuristics are used.".
- Q1764144 thumbnail Steiner_3_points.svg?width=300.
- Q1764144 wikiPageExternalLink node79.html.
- Q1764144 wikiPageExternalLink steinerratio.html.
- Q1764144 wikiPageExternalLink citation.cfm?id=338219.338638.
- Q1764144 wikiPageExternalLink aptsver.html.
- Q1764144 wikiPageExternalLink phylomurka.sf.net.
- Q1764144 wikiPageExternalLink steinerkompendium.
- Q1764144 wikiPageExternalLink implement.shtml.
- Q1764144 wikiPageExternalLink RonaldLG1988.
- Q1764144 wikiPageExternalLink watch?v=PI6rAOWu-Og.
- Q1764144 wikiPageWikiLink Q1137554.
- Q1764144 wikiPageWikiLink Q1194864.
- Q1764144 wikiPageWikiLink Q123514.
- Q1764144 wikiPageWikiLink Q132629.
- Q1764144 wikiPageWikiLink Q1333872.
- Q1764144 wikiPageWikiLink Q13426855.
- Q1764144 wikiPageWikiLink Q1357666.
- Q1764144 wikiPageWikiLink Q141488.
- Q1764144 wikiPageWikiLink Q1446839.
- Q1764144 wikiPageWikiLink Q1475760.
- Q1764144 wikiPageWikiLink Q166154.
- Q1764144 wikiPageWikiLink Q166507.
- Q1764144 wikiPageWikiLink Q16867981.
- Q1764144 wikiPageWikiLink Q17285.
- Q1764144 wikiPageWikiLink Q1734364.
- Q1764144 wikiPageWikiLink Q17502105.
- Q1764144 wikiPageWikiLink Q176916.
- Q1764144 wikiPageWikiLink Q180953.
- Q1764144 wikiPageWikiLink Q19725982.
- Q1764144 wikiPageWikiLink Q201413.
- Q1764144 wikiPageWikiLink Q208216.
- Q1764144 wikiPageWikiLink Q215206.
- Q1764144 wikiPageWikiLink Q2393193.
- Q1764144 wikiPageWikiLink Q240464.
- Q1764144 wikiPageWikiLink Q272735.
- Q1764144 wikiPageWikiLink Q3034655.
- Q1764144 wikiPageWikiLink Q3115621.
- Q1764144 wikiPageWikiLink Q3262192.
- Q1764144 wikiPageWikiLink Q383444.
- Q1764144 wikiPageWikiLink Q44946.
- Q1764144 wikiPageWikiLink Q45715.
- Q1764144 wikiPageWikiLink Q4653447.
- Q1764144 wikiPageWikiLink Q573509.
- Q1764144 wikiPageWikiLink Q621751.
- Q1764144 wikiPageWikiLink Q7007195.
- Q1764144 wikiPageWikiLink Q701.
- Q1764144 wikiPageWikiLink Q7132783.
- Q1764144 wikiPageWikiLink Q7217255.
- Q1764144 wikiPageWikiLink Q7269439.
- Q1764144 wikiPageWikiLink Q746242.
- Q1764144 wikiPageWikiLink Q746413.
- Q1764144 wikiPageWikiLink Q7481159.
- Q1764144 wikiPageWikiLink Q7661893.
- Q1764144 wikiPageWikiLink Q7700464.
- Q1764144 wikiPageWikiLink Q7782354.
- Q1764144 wikiPageWikiLink Q843550.
- Q1764144 wikiPageWikiLink Q847073.
- Q1764144 wikiPageWikiLink Q876049.
- Q1764144 wikiPageWikiLink Q914929.
- Q1764144 wikiPageWikiLink Q954828.
- Q1764144 wikiPageWikiLink Q984063.
- Q1764144 comment "The Steiner tree problem, motorway problem, or minimum Steiner tree problem, named after Jakob Steiner, is a problem in combinatorial optimization, which may be formulated in a number of settings, with the common part being that it is required to find the shortest interconnect for a given set of objects.The Steiner tree problem is superficially similar to the minimum spanning tree problem: given a set V of points (vertices), interconnect them by a network (graph) of shortest length, where the length is the sum of the lengths of all edges. ".
- Q1764144 label "Steiner tree problem".
- Q1764144 depiction Steiner_3_points.svg.