Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q17086853> ?p ?o }
Showing triples 1 to 64 of
64
with 100 triples per page.
- Q17086853 subject Q7214699.
- Q17086853 subject Q8670947.
- Q17086853 abstract "In non-parametric statistics, there is a method for robustly fitting a line to a set of points (simple linear regression) that chooses the median slope among all lines through pairs of two-dimensional sample points. It has been called the Theil–Sen estimator, Sen's slope estimator, slope selection, the single median method, the Kendall robust line-fit method, and the Kendall–Theil robust line. It is named after Henri Theil and Pranab K. Sen, who published papers on this method in 1950 and 1968 respectively, and after Maurice Kendall.This estimator can be computed efficiently, and is insensitive to outliers. It can be significantly more accurate than non-robust simple linear regression for skewed and heteroskedastic data, and competes well against non-robust least squares even for normally distributed data in terms of statistical power. It has been called "the most popular nonparametric technique for estimating a linear trend".".
- Q17086853 thumbnail Thiel-Sen_estimator.svg?width=300.
- Q17086853 wikiPageExternalLink v=onepage&q&f=false.
- Q17086853 wikiPageExternalLink tm4a7.
- Q17086853 wikiPageExternalLink SODA10_015_chant.pdf.
- Q17086853 wikiPageExternalLink books?id=Bm4KQsT9kBUC&pg=PA19.
- Q17086853 wikiPageExternalLink books?id=Lj5PU_psLCMC&pg=PA577.
- Q17086853 wikiPageExternalLink books?id=N6KCNw5NHNkC&pg=PA539.
- Q17086853 wikiPageExternalLink books?id=YSFb4QX2UIoC&pg=PA207.
- Q17086853 wikiPageExternalLink books?id=ZvulFAhLIHYC&pg=PA230.
- Q17086853 wikiPageExternalLink books?id=jF0QhuxXeIwC&pg=PA355.
- Q17086853 wikiPageExternalLink books?id=kF4L6eblK6wC&pg=PA113.
- Q17086853 wikiPageExternalLink books?id=lEo1rvDGUEkC&pg=PA217.
- Q17086853 wikiPageExternalLink books?id=lK9gHXwYnqgC&pg=PA67.
- Q17086853 wikiPageExternalLink software.
- Q17086853 wikiPageWikiLink Q1063540.
- Q17086853 wikiPageWikiLink Q1097688.
- Q17086853 wikiPageWikiLink Q1199823.
- Q17086853 wikiPageWikiLink Q129239.
- Q17086853 wikiPageWikiLink Q15192296.
- Q17086853 wikiPageWikiLink Q15222032.
- Q17086853 wikiPageWikiLink Q1665389.
- Q17086853 wikiPageWikiLink Q193755.
- Q17086853 wikiPageWikiLink Q207643.
- Q17086853 wikiPageWikiLink Q208498.
- Q17086853 wikiPageWikiLink Q20999616.
- Q17086853 wikiPageWikiLink Q21198.
- Q17086853 wikiPageWikiLink Q2265984.
- Q17086853 wikiPageWikiLink Q226995.
- Q17086853 wikiPageWikiLink Q2378.
- Q17086853 wikiPageWikiLink Q256355.
- Q17086853 wikiPageWikiLink Q275447.
- Q17086853 wikiPageWikiLink Q2835831.
- Q17086853 wikiPageWikiLink Q2835897.
- Q17086853 wikiPageWikiLink Q3252726.
- Q17086853 wikiPageWikiLink Q3268404.
- Q17086853 wikiPageWikiLink Q330828.
- Q17086853 wikiPageWikiLink Q333.
- Q17086853 wikiPageWikiLink Q377796.
- Q17086853 wikiPageWikiLink Q3909884.
- Q17086853 wikiPageWikiLink Q4181923.
- Q17086853 wikiPageWikiLink Q4503892.
- Q17086853 wikiPageWikiLink Q4795848.
- Q17086853 wikiPageWikiLink Q583461.
- Q17086853 wikiPageWikiLink Q625376.
- Q17086853 wikiPageWikiLink Q7100.
- Q17086853 wikiPageWikiLink Q7214699.
- Q17086853 wikiPageWikiLink Q7309537.
- Q17086853 wikiPageWikiLink Q735346.
- Q17086853 wikiPageWikiLink Q7390263.
- Q17086853 wikiPageWikiLink Q742691.
- Q17086853 wikiPageWikiLink Q74304.
- Q17086853 wikiPageWikiLink Q7520804.
- Q17086853 wikiPageWikiLink Q7554236.
- Q17086853 wikiPageWikiLink Q779824.
- Q17086853 wikiPageWikiLink Q7979899.
- Q17086853 wikiPageWikiLink Q8083987.
- Q17086853 wikiPageWikiLink Q8670947.
- Q17086853 wikiPageWikiLink Q874709.
- Q17086853 comment "In non-parametric statistics, there is a method for robustly fitting a line to a set of points (simple linear regression) that chooses the median slope among all lines through pairs of two-dimensional sample points. It has been called the Theil–Sen estimator, Sen's slope estimator, slope selection, the single median method, the Kendall robust line-fit method, and the Kendall–Theil robust line. It is named after Henri Theil and Pranab K.".
- Q17086853 label "Theil–Sen estimator".
- Q17086853 depiction Thiel-Sen_estimator.svg.