Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q1536431> ?p ?o }
Showing triples 1 to 59 of
59
with 100 triples per page.
- Q1536431 subject Q6261426.
- Q1536431 subject Q7066518.
- Q1536431 subject Q8444092.
- Q1536431 abstract "Quantum error correction is used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is essential if one is to achieve fault-tolerant quantum computation that can deal not only with noise on stored quantum information, but also with faulty quantum gates, faulty quantum preparation, and faulty measurements.Classical error correction employs redundancy. The simplest way is to store the information multiple times, and—if these copies are later found to disagree—just take a majority vote; e.g. Suppose we copy a bit three times. Suppose further that a noisy error corrupts the three-bit state so that one bit is equal to zero but the other two are equal to one. If we assume that noisy errors are independent and occur with some probability p. It is most likely that the error is a single-bit error and the transmitted message is three ones. It is possible that a double-bit error occurs and the transmitted message is equal to three zeros, but this outcome is less likely than the above outcome.Copying quantum information is not possible due to the no-cloning theorem. This theorem seems to present an obstacle to formulating a theory of quantum error correction. But it is possible to spread the information of one qubit onto a highly entangled state of several (physical) qubits. Peter Shor first discovered this method of formulating a quantum error correcting code by storing the information of one qubit onto a highly entangled state of nine qubits. A quantum error correcting code protects quantum information against errors of a limited form.Classical error correcting codes use a syndrome measurement to diagnose which error corrupts an encoded state. We then reverse an error by applying a corrective operation based on the syndrome. Quantum error correction also employs syndrome measurements. We perform a multi-qubit measurement that does not disturb the quantum information in the encoded state but retrieves information about the error. A syndrome measurement can determine whether a qubit has been corrupted, and if so, which one. What is more, the outcome of this operation (the syndrome) tells us not only which physical qubit was affected, but also, in which of several possible ways it was affected. The latter is counter-intuitive at first sight: Since noise is arbitrary, how can the effect of noise be one of only few distinct possibilities? In most codes, the effect is either a bit flip, or a sign (of the phase) flip, or both (corresponding to the Pauli matrices X, Z, and Y). The reason is that the measurement of the syndrome has the projective effect of a quantum measurement. So even if the error due to the noise was arbitrary, it can be expressed as a superposition of basis operations—the error basis (which is here given by the Pauli matrices and the identity). The syndrome measurement "forces" the qubit to "decide" for a certain specific "Pauli error" to "have happened", and the syndrome tells us which, so that we can let the same Pauli operator act again on the corrupted qubit to revert the effect of the error.The syndrome measurement tells us as much as possible about the error that has happened, but nothing at all about the value that is stored in the logical qubit—as otherwise the measurement would destroy any quantum superposition of this logical qubit with other qubits in the quantum computer.".
- Q1536431 thumbnail Quantum_error_correction_of_bit_flip_using_three_qubits.svg?width=300.
- Q1536431 wikiPageExternalLink 9604038.
- Q1536431 wikiPageExternalLink 9605005.
- Q1536431 wikiPageExternalLink 9608006.
- Q1536431 wikiPageExternalLink 0410199.
- Q1536431 wikiPageExternalLink nphoton.2010.168.html.
- Q1536431 wikiPageExternalLink article.ns?id=dn9301&feedId=online-news_rss20.
- Q1536431 wikiPageExternalLink theme3.py?level=1&index1=362347.
- Q1536431 wikiPageWikiLink Q1062839.
- Q1536431 wikiPageWikiLink Q122192.
- Q1536431 wikiPageWikiLink Q1333178.
- Q1536431 wikiPageWikiLink Q15260926.
- Q1536431 wikiPageWikiLink Q1536431.
- Q1536431 wikiPageWikiLink Q1658917.
- Q1536431 wikiPageWikiLink Q1751823.
- Q1536431 wikiPageWikiLink Q176555.
- Q1536431 wikiPageWikiLink Q185553.
- Q1536431 wikiPageWikiLink Q189569.
- Q1536431 wikiPageWikiLink Q2108369.
- Q1536431 wikiPageWikiLink Q2118982.
- Q1536431 wikiPageWikiLink Q2122176.
- Q1536431 wikiPageWikiLink Q2122243.
- Q1536431 wikiPageWikiLink Q215675.
- Q1536431 wikiPageWikiLink Q2362761.
- Q1536431 wikiPageWikiLink Q2643958.
- Q1536431 wikiPageWikiLink Q2981610.
- Q1536431 wikiPageWikiLink Q336233.
- Q1536431 wikiPageWikiLink Q370071.
- Q1536431 wikiPageWikiLink Q378201.
- Q1536431 wikiPageWikiLink Q4758631.
- Q1536431 wikiPageWikiLink Q5014366.
- Q1536431 wikiPageWikiLink Q519967.
- Q1536431 wikiPageWikiLink Q5217317.
- Q1536431 wikiPageWikiLink Q5217938.
- Q1536431 wikiPageWikiLink Q5380094.
- Q1536431 wikiPageWikiLink Q578430.
- Q1536431 wikiPageWikiLink Q609647.
- Q1536431 wikiPageWikiLink Q6261426.
- Q1536431 wikiPageWikiLink Q633815.
- Q1536431 wikiPageWikiLink Q7066518.
- Q1536431 wikiPageWikiLink Q7269075.
- Q1536431 wikiPageWikiLink Q7298951.
- Q1536431 wikiPageWikiLink Q7605496.
- Q1536431 wikiPageWikiLink Q7663895.
- Q1536431 wikiPageWikiLink Q7825042.
- Q1536431 wikiPageWikiLink Q7825777.
- Q1536431 wikiPageWikiLink Q7834688.
- Q1536431 wikiPageWikiLink Q830791.
- Q1536431 wikiPageWikiLink Q8444092.
- Q1536431 wikiPageWikiLink Q907385.
- Q1536431 wikiPageWikiLink Q917713.
- Q1536431 wikiPageWikiLink Q9594.
- Q1536431 comment "Quantum error correction is used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is essential if one is to achieve fault-tolerant quantum computation that can deal not only with noise on stored quantum information, but also with faulty quantum gates, faulty quantum preparation, and faulty measurements.Classical error correction employs redundancy.".
- Q1536431 label "Quantum error correction".
- Q1536431 depiction Quantum_error_correction_of_bit_flip_using_three_qubits.svg.