Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q1425529> ?p ?o }
Showing triples 1 to 36 of
36
with 100 triples per page.
- Q1425529 subject Q15206900.
- Q1425529 subject Q6769154.
- Q1425529 abstract "Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field Q of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime p in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes p less than a large integer N, tends to a certain limit as N goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in (Tschebotareff 1926).A special case that is easier to state says that if K is an algebraic number field which is a Galois extension of Q of degree n, then the prime numbers that completely split in K have density 1/namong all primes. More generally, splitting behavior can be specified by assigning to (almost) every prime number an invariant, its Frobenius element, which strictly is a representative of a well-defined conjugacy class in the Galois group Gal(K/Q).Then the theorem says that the asymptotic distribution of these invariants is uniform over the group, so that a conjugacy class with k elements occurs with frequency asymptotic to k/n.".
- Q1425529 wikiPageExternalLink chebotarev.pdf.
- Q1425529 wikiPageWikiLink Q104752.
- Q1425529 wikiPageWikiLink Q1082910.
- Q1425529 wikiPageWikiLink Q1137087.
- Q1425529 wikiPageWikiLink Q1244890.
- Q1425529 wikiPageWikiLink Q1353233.
- Q1425529 wikiPageWikiLink Q1425529.
- Q1425529 wikiPageWikiLink Q15206900.
- Q1425529 wikiPageWikiLink Q1554628.
- Q1425529 wikiPageWikiLink Q161519.
- Q1425529 wikiPageWikiLink Q190026.
- Q1425529 wikiPageWikiLink Q1996100.
- Q1425529 wikiPageWikiLink Q2020004.
- Q1425529 wikiPageWikiLink Q318705.
- Q1425529 wikiPageWikiLink Q49008.
- Q1425529 wikiPageWikiLink Q5161150.
- Q1425529 wikiPageWikiLink Q550402.
- Q1425529 wikiPageWikiLink Q550593.
- Q1425529 wikiPageWikiLink Q570859.
- Q1425529 wikiPageWikiLink Q57228.
- Q1425529 wikiPageWikiLink Q613048.
- Q1425529 wikiPageWikiLink Q616608.
- Q1425529 wikiPageWikiLink Q646245.
- Q1425529 wikiPageWikiLink Q6722.
- Q1425529 wikiPageWikiLink Q6769154.
- Q1425529 wikiPageWikiLink Q724975.
- Q1425529 wikiPageWikiLink Q730384.
- Q1425529 wikiPageWikiLink Q752723.
- Q1425529 wikiPageWikiLink Q769124.
- Q1425529 wikiPageWikiLink Q836088.
- Q1425529 wikiPageWikiLink Q849512.
- Q1425529 comment "Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field Q of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur.".
- Q1425529 label "Chebotarev's density theorem".