Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q1319773> ?p ?o }
Showing triples 1 to 61 of
61
with 100 triples per page.
- Q1319773 subject Q7158865.
- Q1319773 subject Q7452060.
- Q1319773 subject Q9883138.
- Q1319773 abstract "In classical deductive logic, a consistent theory is one that does not contain a contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if and only if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead. The syntactic definition states that a theory is consistent if and only if there is no formula P such that both P and its negation are provable from the axioms of the theory under its associated deductive system.If these semantic and syntactic definitions are equivalent for any theory formulated using a particular deductive logic, the logic is called complete. The completeness of the sentential calculus was proved by Paul Bernays in 1918 and Emil Post in 1921, while the completeness of predicate calculus was proved by Kurt Gödel in 1930, and consistency proofs for arithmetics restricted with respect to the induction axiom schema were proved by Ackermann (1924), von Neumann (1927) and Herbrand (1931). Stronger logics, such as second-order logic, are not complete.A consistency proof is a mathematical proof that a particular theory is consistent. The early development of mathematical proof theory was driven by the desire to provide finitary consistency proofs for all of mathematics as part of Hilbert's program. Hilbert's program was strongly impacted by incompleteness theorems, which showed that sufficiently strong proof theories cannot prove their own consistency (provided that they are in fact consistent).Although consistency can be proved by means of model theory, it is often done in a purely syntactical way, without any need to reference some model of the logic. The cut-elimination (or equivalently the normalization of the underlying calculus if there is one) implies the consistency of the calculus: since there is obviously no cut-free proof of falsity, there is no contradiction in general.".
- Q1319773 wikiPageExternalLink mathematics-inconsistent.
- Q1319773 wikiPageWikiLink Q10859910.
- Q1319773 wikiPageWikiLink Q11538.
- Q1319773 wikiPageWikiLink Q1166618.
- Q1319773 wikiPageWikiLink Q122318.
- Q1319773 wikiPageWikiLink Q130998.
- Q1319773 wikiPageWikiLink Q13424667.
- Q1319773 wikiPageWikiLink Q1548746.
- Q1319773 wikiPageWikiLink Q15846555.
- Q1319773 wikiPageWikiLink Q170147.
- Q1319773 wikiPageWikiLink Q1761588.
- Q1319773 wikiPageWikiLink Q17736.
- Q1319773 wikiPageWikiLink Q178377.
- Q1319773 wikiPageWikiLink Q180159.
- Q1319773 wikiPageWikiLink Q190558.
- Q1319773 wikiPageWikiLink Q191849.
- Q1319773 wikiPageWikiLink Q200694.
- Q1319773 wikiPageWikiLink Q200787.
- Q1319773 wikiPageWikiLink Q207534.
- Q1319773 wikiPageWikiLink Q236975.
- Q1319773 wikiPageWikiLink Q237125.
- Q1319773 wikiPageWikiLink Q2705017.
- Q1319773 wikiPageWikiLink Q273167.
- Q1319773 wikiPageWikiLink Q293137.
- Q1319773 wikiPageWikiLink Q313454.
- Q1319773 wikiPageWikiLink Q3235413.
- Q1319773 wikiPageWikiLink Q335148.
- Q1319773 wikiPageWikiLink Q351366.
- Q1319773 wikiPageWikiLink Q363948.
- Q1319773 wikiPageWikiLink Q376166.
- Q1319773 wikiPageWikiLink Q3890222.
- Q1319773 wikiPageWikiLink Q4055684.
- Q1319773 wikiPageWikiLink Q41390.
- Q1319773 wikiPageWikiLink Q426592.
- Q1319773 wikiPageWikiLink Q449711.
- Q1319773 wikiPageWikiLink Q467606.
- Q1319773 wikiPageWikiLink Q484284.
- Q1319773 wikiPageWikiLink Q523607.
- Q1319773 wikiPageWikiLink Q5384443.
- Q1319773 wikiPageWikiLink Q5533794.
- Q1319773 wikiPageWikiLink Q655328.
- Q1319773 wikiPageWikiLink Q7158865.
- Q1319773 wikiPageWikiLink Q7243580.
- Q1319773 wikiPageWikiLink Q7452060.
- Q1319773 wikiPageWikiLink Q8028383.
- Q1319773 wikiPageWikiLink Q8078.
- Q1319773 wikiPageWikiLink Q824553.
- Q1319773 wikiPageWikiLink Q842755.
- Q1319773 wikiPageWikiLink Q852732.
- Q1319773 wikiPageWikiLink Q949972.
- Q1319773 wikiPageWikiLink Q956059.
- Q1319773 wikiPageWikiLink Q968548.
- Q1319773 wikiPageWikiLink Q975734.
- Q1319773 wikiPageWikiLink Q976981.
- Q1319773 wikiPageWikiLink Q9883138.
- Q1319773 comment "In classical deductive logic, a consistent theory is one that does not contain a contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if and only if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead.".
- Q1319773 label "Consistency".