Matches in DBpedia 2016-04 for { <http://wikidata.dbpedia.org/resource/Q1179419> ?p ?o }
Showing triples 1 to 25 of
25
with 100 triples per page.
- Q1179419 subject Q7013903.
- Q1179419 subject Q8792032.
- Q1179419 abstract "In the mathematical field of numerical analysis, De Casteljau's algorithm is a recursive method to evaluate polynomials in Bernstein form or Bézier curves, named after its inventor Paul de Casteljau. De Casteljau's algorithm can also be used to split a single Bézier curve into two Bézier curves at an arbitrary parameter value.Although the algorithm is slower for most architectures when compared with the direct approach, it is more numerically stable.".
- Q1179419 wikiPageExternalLink piecewise-linear-approximation-of-bezier-curves.
- Q1179419 wikiPageExternalLink bezier-curves-and-picasso.
- Q1179419 wikiPageWikiLink Q1067155.
- Q1179419 wikiPageWikiLink Q11216.
- Q1179419 wikiPageWikiLink Q1396450.
- Q1179419 wikiPageWikiLink Q1430640.
- Q1179419 wikiPageWikiLink Q1482183.
- Q1179419 wikiPageWikiLink Q179976.
- Q1179419 wikiPageWikiLink Q214728.
- Q1179419 wikiPageWikiLink Q34010.
- Q1179419 wikiPageWikiLink Q395.
- Q1179419 wikiPageWikiLink Q5244271.
- Q1179419 wikiPageWikiLink Q619511.
- Q1179419 wikiPageWikiLink Q6901742.
- Q1179419 wikiPageWikiLink Q7013903.
- Q1179419 wikiPageWikiLink Q740970.
- Q1179419 wikiPageWikiLink Q826841.
- Q1179419 wikiPageWikiLink Q877775.
- Q1179419 wikiPageWikiLink Q8792032.
- Q1179419 wikiPageWikiLink Q944658.
- Q1179419 comment "In the mathematical field of numerical analysis, De Casteljau's algorithm is a recursive method to evaluate polynomials in Bernstein form or Bézier curves, named after its inventor Paul de Casteljau. De Casteljau's algorithm can also be used to split a single Bézier curve into two Bézier curves at an arbitrary parameter value.Although the algorithm is slower for most architectures when compared with the direct approach, it is more numerically stable.".
- Q1179419 label "De Casteljau's algorithm".