Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Witt_vector> ?p ?o }
Showing triples 1 to 70 of
70
with 100 triples per page.
- Witt_vector abstract "In mathematics, a Witt vector is an infinite sequence of elements of a commutative ring. Ernst Witt showed how to put a ring structure on the set of Witt vectors, in such a way that the ring of Witt vectors over the finite field of order p is the ring of p-adic integers.".
- Witt_vector wikiPageExternalLink ?IDDOC=504725.
- Witt_vector wikiPageID "5573710".
- Witt_vector wikiPageLength "17096".
- Witt_vector wikiPageOutDegree "37".
- Witt_vector wikiPageRevisionID "704163456".
- Witt_vector wikiPageWikiLink Algebraic_group.
- Witt_vector wikiPageWikiLink Algebraically_closed_field.
- Witt_vector wikiPageWikiLink Artin–Hasse_exponential.
- Witt_vector wikiPageWikiLink Category:Algebraic_groups.
- Witt_vector wikiPageWikiLink Category:Combinatorics_on_words.
- Witt_vector wikiPageWikiLink Category:Ring_theory.
- Witt_vector wikiPageWikiLink Commutative_ring.
- Witt_vector wikiPageWikiLink Ernst_Witt.
- Witt_vector wikiPageWikiLink Finite_field.
- Witt_vector wikiPageWikiLink Formal_group.
- Witt_vector wikiPageWikiLink Formal_power_series.
- Witt_vector wikiPageWikiLink Functor.
- Witt_vector wikiPageWikiLink Hensels_lemma.
- Witt_vector wikiPageWikiLink Inverse_limit.
- Witt_vector wikiPageWikiLink Isogeny.
- Witt_vector wikiPageWikiLink Least_common_multiple.
- Witt_vector wikiPageWikiLink Logarithmic_derivative.
- Witt_vector wikiPageWikiLink Mathematical_structure.
- Witt_vector wikiPageWikiLink Mathematics.
- Witt_vector wikiPageWikiLink Oswald_Teichmüller.
- Witt_vector wikiPageWikiLink P-adic_number.
- Witt_vector wikiPageWikiLink Power_series.
- Witt_vector wikiPageWikiLink Prime_number.
- Witt_vector wikiPageWikiLink Princeton_University_Press.
- Witt_vector wikiPageWikiLink Ring_of_symmetric_functions.
- Witt_vector wikiPageWikiLink Ring_scheme.
- Witt_vector wikiPageWikiLink Sequence.
- Witt_vector wikiPageWikiLink Splitting_of_prime_ideals_in_Galois_extensions.
- Witt_vector wikiPageWikiLink Springer_Science+Business_Media.
- Witt_vector wikiPageWikiLink Teichmüller_character.
- Witt_vector wikiPageWikiLink Unipotent.
- Witt_vector wikiPageWikiLinkText "Teichmüller representatives".
- Witt_vector wikiPageWikiLinkText "Witt ring".
- Witt_vector wikiPageWikiLinkText "Witt vector".
- Witt_vector authorlink "Dolgachev".
- Witt_vector first "I.V.".
- Witt_vector id "Witt_vector".
- Witt_vector last "Dolgachev".
- Witt_vector title "Witt vector".
- Witt_vector wikiPageUsesTemplate Template:Citation.
- Witt_vector wikiPageUsesTemplate Template:MathSciNet.
- Witt_vector wikiPageUsesTemplate Template:Reflist.
- Witt_vector wikiPageUsesTemplate Template:Springer.
- Witt_vector subject Category:Algebraic_groups.
- Witt_vector subject Category:Combinatorics_on_words.
- Witt_vector subject Category:Ring_theory.
- Witt_vector hypernym Sequence.
- Witt_vector type Group.
- Witt_vector type Combinatoric.
- Witt_vector type Diacritic.
- Witt_vector type Group.
- Witt_vector type Redirect.
- Witt_vector type Variety.
- Witt_vector comment "In mathematics, a Witt vector is an infinite sequence of elements of a commutative ring. Ernst Witt showed how to put a ring structure on the set of Witt vectors, in such a way that the ring of Witt vectors over the finite field of order p is the ring of p-adic integers.".
- Witt_vector label "Witt vector".
- Witt_vector sameAs Q1756171.
- Witt_vector sameAs Wittvektor.
- Witt_vector sameAs Vecteur_de_Witt.
- Witt_vector sameAs Pierścień_Witta.
- Witt_vector sameAs m.0dt7cr.
- Witt_vector sameAs Вектор_Витта.
- Witt_vector sameAs Q1756171.
- Witt_vector wasDerivedFrom Witt_vector?oldid=704163456.
- Witt_vector isPrimaryTopicOf Witt_vector.