Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Whitehead_manifold> ?p ?o }
Showing triples 1 to 57 of
57
with 100 triples per page.
- Whitehead_manifold abstract "In mathematics, the Whitehead manifold is an open 3-manifold that is contractible, but not homeomorphic to R3. Whitehead (1935) discovered this puzzling object while he was trying to prove the Poincaré conjecture, correcting an error in an earlier paper Whitehead (1934, theorem 3) where he incorrectly claimed that no such manifold exists.A contractible manifold is one that can continuously be shrunk to a point inside the manifold itself. For example, an open ball is a contractible manifold. All manifolds homeomorphic to the ball are contractible, too. One can ask whether all contractible manifolds are homeomorphic to a ball. For dimensions 1 and 2, the answer is classical and it is \"yes\". In dimension 2, it follows, for example, from the Riemann mapping theorem. Dimension 3 presents the first counterexample: the Whitehead manifold.".
- Whitehead_manifold thumbnail Whitehead_manifold.png?width=300.
- Whitehead_manifold wikiPageID "1192013".
- Whitehead_manifold wikiPageLength "5780".
- Whitehead_manifold wikiPageOutDegree "32".
- Whitehead_manifold wikiPageRevisionID "671601770".
- Whitehead_manifold wikiPageWikiLink 3-manifold.
- Whitehead_manifold wikiPageWikiLink 3-sphere.
- Whitehead_manifold wikiPageWikiLink Ball_(mathematics).
- Whitehead_manifold wikiPageWikiLink Casson_handle.
- Whitehead_manifold wikiPageWikiLink Category:3-manifolds.
- Whitehead_manifold wikiPageWikiLink Category:Geometric_topology.
- Whitehead_manifold wikiPageWikiLink Circle.
- Whitehead_manifold wikiPageWikiLink Closure_(topology).
- Whitehead_manifold wikiPageWikiLink Contractible_space.
- Whitehead_manifold wikiPageWikiLink Counterexample.
- Whitehead_manifold wikiPageWikiLink Disk_(mathematics).
- Whitehead_manifold wikiPageWikiLink Dogbone_space.
- Whitehead_manifold wikiPageWikiLink Doughnut.
- Whitehead_manifold wikiPageWikiLink Homeomorphism.
- Whitehead_manifold wikiPageWikiLink Homotopy.
- Whitehead_manifold wikiPageWikiLink Hurewicz_theorem.
- Whitehead_manifold wikiPageWikiLink Manifold.
- Whitehead_manifold wikiPageWikiLink Mathematics.
- Whitehead_manifold wikiPageWikiLink Morton_Brown.
- Whitehead_manifold wikiPageWikiLink Poincaré_conjecture.
- Whitehead_manifold wikiPageWikiLink Product_topology.
- Whitehead_manifold wikiPageWikiLink Riemann_mapping_theorem.
- Whitehead_manifold wikiPageWikiLink Simply_connected_at_infinity.
- Whitehead_manifold wikiPageWikiLink Solid_torus.
- Whitehead_manifold wikiPageWikiLink Torus.
- Whitehead_manifold wikiPageWikiLink Tubular_neighborhood.
- Whitehead_manifold wikiPageWikiLink Whitehead_link.
- Whitehead_manifold wikiPageWikiLink Whitehead_theorem.
- Whitehead_manifold wikiPageWikiLink Winding_number.
- Whitehead_manifold wikiPageWikiLink File:Whitehead_manifold.png.
- Whitehead_manifold wikiPageWikiLink File:Whiteheadlink.png.
- Whitehead_manifold wikiPageWikiLinkText "Whitehead manifold".
- Whitehead_manifold wikiPageUsesTemplate Template:Citation.
- Whitehead_manifold wikiPageUsesTemplate Template:Cite_book.
- Whitehead_manifold wikiPageUsesTemplate Template:Harvs.
- Whitehead_manifold wikiPageUsesTemplate Template:Harvtxt.
- Whitehead_manifold wikiPageUsesTemplate Template:Reflist.
- Whitehead_manifold subject Category:3-manifolds.
- Whitehead_manifold subject Category:Geometric_topology.
- Whitehead_manifold hypernym Manifold.
- Whitehead_manifold comment "In mathematics, the Whitehead manifold is an open 3-manifold that is contractible, but not homeomorphic to R3. Whitehead (1935) discovered this puzzling object while he was trying to prove the Poincaré conjecture, correcting an error in an earlier paper Whitehead (1934, theorem 3) where he incorrectly claimed that no such manifold exists.A contractible manifold is one that can continuously be shrunk to a point inside the manifold itself. For example, an open ball is a contractible manifold.".
- Whitehead_manifold label "Whitehead manifold".
- Whitehead_manifold sameAs Q2669907.
- Whitehead_manifold sameAs Dukto_de_Whitehead.
- Whitehead_manifold sameAs Whitehead-variëteit.
- Whitehead_manifold sameAs m.04g1j0.
- Whitehead_manifold sameAs Многообразие_Уайтхеда.
- Whitehead_manifold sameAs Q2669907.
- Whitehead_manifold wasDerivedFrom Whitehead_manifold?oldid=671601770.
- Whitehead_manifold depiction Whitehead_manifold.png.
- Whitehead_manifold isPrimaryTopicOf Whitehead_manifold.