Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Vietoris–Rips_complex> ?p ?o }
Showing triples 1 to 60 of
60
with 100 triples per page.
- Vietoris–Rips_complex abstract "In topology, the Vietoris–Rips complex, also called the Vietoris complex or Rips complex, is an abstract simplicial complex that can be defined from any metric space M and distance δ by forming a simplex for every finite set of points that has diameter at most δ. That is, it is a family of finite subsets of M, in which we think of a subset of k points as forming a (k − 1)-dimensional simplex (an edge for two points, a triangle for three points, a tetrahedron for four points, etc.); if a finite set S has the property that the distance between every pair of points in S is at most δ, then we include S as a simplex in the complex.".
- Vietoris–Rips_complex thumbnail VR_complex.svg?width=300.
- Vietoris–Rips_complex wikiPageExternalLink fea-vietoris.pdf.
- Vietoris–Rips_complex wikiPageExternalLink ripscon.html.
- Vietoris–Rips_complex wikiPageExternalLink RSS_FINAL.pdf.
- Vietoris–Rips_complex wikiPageID "13056778".
- Vietoris–Rips_complex wikiPageLength "9972".
- Vietoris–Rips_complex wikiPageOutDegree "36".
- Vietoris–Rips_complex wikiPageRevisionID "669231205".
- Vietoris–Rips_complex wikiPageWikiLink Abstract_simplicial_complex.
- Vietoris–Rips_complex wikiPageWikiLink Ball_(mathematics).
- Vietoris–Rips_complex wikiPageWikiLink Category:Algebraic_topology.
- Vietoris–Rips_complex wikiPageWikiLink Category:Geometric_graph_theory.
- Vietoris–Rips_complex wikiPageWikiLink Category:Simplicial_sets.
- Vietoris–Rips_complex wikiPageWikiLink Clique_(graph_theory).
- Vietoris–Rips_complex wikiPageWikiLink Clique_complex.
- Vietoris–Rips_complex wikiPageWikiLink Computer_science.
- Vietoris–Rips_complex wikiPageWikiLink Diameter.
- Vietoris–Rips_complex wikiPageWikiLink Eliyahu_Rips.
- Vietoris–Rips_complex wikiPageWikiLink Equilateral_triangle.
- Vietoris–Rips_complex wikiPageWikiLink Finite_set.
- Vietoris–Rips_complex wikiPageWikiLink Geodesic_convexity.
- Vietoris–Rips_complex wikiPageWikiLink Homology_(mathematics).
- Vietoris–Rips_complex wikiPageWikiLink Homotopy.
- Vietoris–Rips_complex wikiPageWikiLink Hyperbolic_group.
- Vietoris–Rips_complex wikiPageWikiLink Injective_metric_space.
- Vietoris–Rips_complex wikiPageWikiLink Leopold_Vietoris.
- Vietoris–Rips_complex wikiPageWikiLink Mathematical_Sciences_Research_Institute.
- Vietoris–Rips_complex wikiPageWikiLink Mathematische_Annalen.
- Vietoris–Rips_complex wikiPageWikiLink Metric_space.
- Vietoris–Rips_complex wikiPageWikiLink Mobile_ad_hoc_network.
- Vietoris–Rips_complex wikiPageWikiLink N-skeleton.
- Vietoris–Rips_complex wikiPageWikiLink Nerve_of_a_covering.
- Vietoris–Rips_complex wikiPageWikiLink Riemannian_manifold.
- Vietoris–Rips_complex wikiPageWikiLink Shortest_path_problem.
- Vietoris–Rips_complex wikiPageWikiLink Simplex.
- Vietoris–Rips_complex wikiPageWikiLink Tight_span.
- Vietoris–Rips_complex wikiPageWikiLink Topology.
- Vietoris–Rips_complex wikiPageWikiLink Two-dimensional_space.
- Vietoris–Rips_complex wikiPageWikiLink Unit_disk_graph.
- Vietoris–Rips_complex wikiPageWikiLink Vertex_(graph_theory).
- Vietoris–Rips_complex wikiPageWikiLink Čech_cohomology.
- Vietoris–Rips_complex wikiPageWikiLink File:VR_complex.svg.
- Vietoris–Rips_complex wikiPageWikiLinkText "Vietoris-Rips complex".
- Vietoris–Rips_complex wikiPageWikiLinkText "Vietoris–Rips complex".
- Vietoris–Rips_complex wikiPageUsesTemplate Template:Citation.
- Vietoris–Rips_complex wikiPageUsesTemplate Template:Harvtxt.
- Vietoris–Rips_complex wikiPageUsesTemplate Template:Reflist.
- Vietoris–Rips_complex subject Category:Algebraic_topology.
- Vietoris–Rips_complex subject Category:Geometric_graph_theory.
- Vietoris–Rips_complex subject Category:Simplicial_sets.
- Vietoris–Rips_complex type Redirect.
- Vietoris–Rips_complex comment "In topology, the Vietoris–Rips complex, also called the Vietoris complex or Rips complex, is an abstract simplicial complex that can be defined from any metric space M and distance δ by forming a simplex for every finite set of points that has diameter at most δ.".
- Vietoris–Rips_complex label "Vietoris–Rips complex".
- Vietoris–Rips_complex sameAs Q7928689.
- Vietoris–Rips_complex sameAs m.02z4w8b.
- Vietoris–Rips_complex sameAs Q7928689.
- Vietoris–Rips_complex wasDerivedFrom Vietoris–Rips_complex?oldid=669231205.
- Vietoris–Rips_complex depiction VR_complex.svg.
- Vietoris–Rips_complex isPrimaryTopicOf Vietoris–Rips_complex.