Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Unipotent> ?p ?o }
Showing triples 1 to 69 of
69
with 100 triples per page.
- Unipotent abstract "In mathematics, a unipotent element, r, of a ring, R, is one such that r − 1 is a nilpotent element; in other words, (r − 1)n is zero for some n.In particular, a square matrix, M, is a unipotent matrix, if and only if its characteristic polynomial, P(t), is a power of t − 1. Equivalently, M is unipotent if all its eigenvalues are 1. The term quasi-unipotent means that some power is unipotent, for example for a diagonalizable matrix with eigenvalues that are all roots of unity. In an unipotent affine algebraic group all elements are unipotent (see below for the definition of an element being unipotent in such a group).".
- Unipotent wikiPageID "1724478".
- Unipotent wikiPageLength "4680".
- Unipotent wikiPageOutDegree "23".
- Unipotent wikiPageRevisionID "689439959".
- Unipotent wikiPageWikiLink Affine_variety.
- Unipotent wikiPageWikiLink Algebraic_group.
- Unipotent wikiPageWikiLink Annals_of_Mathematics.
- Unipotent wikiPageWikiLink Category:Algebraic_groups.
- Unipotent wikiPageWikiLink Category:Matrix_theory.
- Unipotent wikiPageWikiLink Category:Ring_theory.
- Unipotent wikiPageWikiLink Characteristic_polynomial.
- Unipotent wikiPageWikiLink Deligne–Lusztig_theory.
- Unipotent wikiPageWikiLink Diagonalizable_matrix.
- Unipotent wikiPageWikiLink Eigenvalues_and_eigenvectors.
- Unipotent wikiPageWikiLink Exponential_map_(Lie_theory).
- Unipotent wikiPageWikiLink Jordan–Chevalley_decomposition.
- Unipotent wikiPageWikiLink Mathematics.
- Unipotent wikiPageWikiLink Nilpotent.
- Unipotent wikiPageWikiLink Nilpotent_group.
- Unipotent wikiPageWikiLink Perfect_field.
- Unipotent wikiPageWikiLink Radical_of_an_algebraic_group.
- Unipotent wikiPageWikiLink Ring_(mathematics).
- Unipotent wikiPageWikiLink Root_of_unity.
- Unipotent wikiPageWikiLink Square_matrix.
- Unipotent wikiPageWikiLink Unipotent_representation.
- Unipotent wikiPageWikiLinkText "Unipotent".
- Unipotent wikiPageWikiLinkText "unipotent conjugacy classes".
- Unipotent wikiPageWikiLinkText "unipotent radical".
- Unipotent wikiPageWikiLinkText "unipotent".
- Unipotent wikiPageWikiLinkText "unipotent#Unipotent algebraic groups".
- Unipotent wikiPageWikiLinkText "unipotent#Unipotent_radical".
- Unipotent wikiPageWikiLinkText "unitriangular".
- Unipotent authorlink "Vladimir L. Popov".
- Unipotent first "D.A.".
- Unipotent first "V.L.".
- Unipotent id "U/u095400".
- Unipotent id "U/u095410".
- Unipotent id "U/u095420".
- Unipotent last "Popov".
- Unipotent last "Suprunenko".
- Unipotent title "unipotent element".
- Unipotent title "unipotent group".
- Unipotent title "unipotent matrix".
- Unipotent wikiPageUsesTemplate Template:About.
- Unipotent wikiPageUsesTemplate Template:Citation.
- Unipotent wikiPageUsesTemplate Template:Main.
- Unipotent wikiPageUsesTemplate Template:No_footnotes.
- Unipotent wikiPageUsesTemplate Template:Springer.
- Unipotent wikiPageUsesTemplate Template:Who.
- Unipotent subject Category:Algebraic_groups.
- Unipotent subject Category:Matrix_theory.
- Unipotent subject Category:Ring_theory.
- Unipotent hypernym Element.
- Unipotent type Group.
- Unipotent type MilitaryUnit.
- Unipotent type Group.
- Unipotent type Redirect.
- Unipotent type Variety.
- Unipotent comment "In mathematics, a unipotent element, r, of a ring, R, is one such that r − 1 is a nilpotent element; in other words, (r − 1)n is zero for some n.In particular, a square matrix, M, is a unipotent matrix, if and only if its characteristic polynomial, P(t), is a power of t − 1. Equivalently, M is unipotent if all its eigenvalues are 1. The term quasi-unipotent means that some power is unipotent, for example for a diagonalizable matrix with eigenvalues that are all roots of unity.".
- Unipotent label "Unipotent".
- Unipotent sameAs Q2494915.
- Unipotent sameAs Unipotentes_Element.
- Unipotent sameAs 멱일원.
- Unipotent sameAs m.05r9jg.
- Unipotent sameAs Unipotentnost.
- Unipotent sameAs Q2494915.
- Unipotent wasDerivedFrom Unipotent?oldid=689439959.
- Unipotent isPrimaryTopicOf Unipotent.