Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Subgroup_test> ?p ?o }
Showing triples 1 to 26 of
26
with 100 triples per page.
- Subgroup_test abstract "In abstract algebra, the one-step subgroup test is a theorem that states that for any group, a nonempty subset of that group is itself a group if the inverse of any element in the subset multiplied with any other element in the subset is also in the subset. The two-step subgroup test is a similar theorem which requires the subset to be closed under the operation and taking of inverses.".
- Subgroup_test wikiPageID "10653301".
- Subgroup_test wikiPageLength "1998".
- Subgroup_test wikiPageOutDegree "6".
- Subgroup_test wikiPageRevisionID "685490328".
- Subgroup_test wikiPageWikiLink Abstract_algebra.
- Subgroup_test wikiPageWikiLink Category:Articles_containing_proofs.
- Subgroup_test wikiPageWikiLink Category:Theorems_in_group_theory.
- Subgroup_test wikiPageWikiLink Closure_(mathematics).
- Subgroup_test wikiPageWikiLink Group_(mathematics).
- Subgroup_test wikiPageWikiLink Subset.
- Subgroup_test wikiPageWikiLinkText "Subgroup test".
- Subgroup_test wikiPageWikiLinkText "subgroup test".
- Subgroup_test subject Category:Articles_containing_proofs.
- Subgroup_test subject Category:Theorems_in_group_theory.
- Subgroup_test hypernym Theorem.
- Subgroup_test type Proof.
- Subgroup_test type Redirect.
- Subgroup_test type Theorem.
- Subgroup_test comment "In abstract algebra, the one-step subgroup test is a theorem that states that for any group, a nonempty subset of that group is itself a group if the inverse of any element in the subset multiplied with any other element in the subset is also in the subset. The two-step subgroup test is a similar theorem which requires the subset to be closed under the operation and taking of inverses.".
- Subgroup_test label "Subgroup test".
- Subgroup_test sameAs Q7631155.
- Subgroup_test sameAs m.02qlbbv.
- Subgroup_test sameAs Q7631155.
- Subgroup_test wasDerivedFrom Subgroup_test?oldid=685490328.
- Subgroup_test isPrimaryTopicOf Subgroup_test.