Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Sperner_property_of_a_partially_ordered_set> ?p ?o }
Showing triples 1 to 28 of
28
with 100 triples per page.
- Sperner_property_of_a_partially_ordered_set abstract "In order-theoretic mathematics, a graded partially ordered set is said to have the Sperner property (and hence is called a Sperner poset), if no antichain within it is larger than the largest rank level (one of the sets of elements of the same rank) in the poset. Since every rank level is itself an antichain, the Sperner property is equivalently the property that some rank level is a maximum antichain. The Sperner property and Sperner posets are named after Emanuel Sperner, who proved Sperner's theorem stating that the family of all subsets of a finite set (partially ordered by set inclusion) has this property. The lattice of partitions of a finite set typically lacks the Sperner property.".
- Sperner_property_of_a_partially_ordered_set wikiPageID "26534180".
- Sperner_property_of_a_partially_ordered_set wikiPageLength "2065".
- Sperner_property_of_a_partially_ordered_set wikiPageOutDegree "9".
- Sperner_property_of_a_partially_ordered_set wikiPageRevisionID "666991737".
- Sperner_property_of_a_partially_ordered_set wikiPageWikiLink Antichain.
- Sperner_property_of_a_partially_ordered_set wikiPageWikiLink Category:Order_theory.
- Sperner_property_of_a_partially_ordered_set wikiPageWikiLink Emanuel_Sperner.
- Sperner_property_of_a_partially_ordered_set wikiPageWikiLink Graded_poset.
- Sperner_property_of_a_partially_ordered_set wikiPageWikiLink K-family.
- Sperner_property_of_a_partially_ordered_set wikiPageWikiLink Order_theory.
- Sperner_property_of_a_partially_ordered_set wikiPageWikiLink Partially_ordered_set.
- Sperner_property_of_a_partially_ordered_set wikiPageWikiLink Power_set.
- Sperner_property_of_a_partially_ordered_set wikiPageWikiLink Sperners_theorem.
- Sperner_property_of_a_partially_ordered_set wikiPageWikiLinkText "Sperner property of a partially ordered set".
- Sperner_property_of_a_partially_ordered_set wikiPageWikiLinkText "Sperner property".
- Sperner_property_of_a_partially_ordered_set wikiPageUsesTemplate Template:Combin-stub.
- Sperner_property_of_a_partially_ordered_set wikiPageUsesTemplate Template:Reflist.
- Sperner_property_of_a_partially_ordered_set subject Category:Order_theory.
- Sperner_property_of_a_partially_ordered_set type Combinatoric.
- Sperner_property_of_a_partially_ordered_set type Field.
- Sperner_property_of_a_partially_ordered_set comment "In order-theoretic mathematics, a graded partially ordered set is said to have the Sperner property (and hence is called a Sperner poset), if no antichain within it is larger than the largest rank level (one of the sets of elements of the same rank) in the poset. Since every rank level is itself an antichain, the Sperner property is equivalently the property that some rank level is a maximum antichain.".
- Sperner_property_of_a_partially_ordered_set label "Sperner property of a partially ordered set".
- Sperner_property_of_a_partially_ordered_set sameAs Q7576398.
- Sperner_property_of_a_partially_ordered_set sameAs m.0bhb63b.
- Sperner_property_of_a_partially_ordered_set sameAs Q7576398.
- Sperner_property_of_a_partially_ordered_set wasDerivedFrom Sperner_property_of_a_partially_ordered_set?oldid=666991737.
- Sperner_property_of_a_partially_ordered_set isPrimaryTopicOf Sperner_property_of_a_partially_ordered_set.