Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Skolem–Mahler–Lech_theorem> ?p ?o }
Showing triples 1 to 46 of
46
with 100 triples per page.
- Skolem–Mahler–Lech_theorem abstract "In additive number theory, the Skolem–Mahler–Lech theorem states that if a sequence of numbers is generated by a linear recurrence relation, then with finitely many exceptions the positions at which the sequence is zero form a regularly repeating pattern. More precisely, this set of positions can be decomposed into the union of a finite set and finitely many full arithmetic progressions. Here, an infinite arithmetic progression is full if there exist integers a and b such that the progression consists of all positive integers equal to b modulo a.This result is named after Thoralf Skolem (who proved the theorem for sequences of rational numbers), Kurt Mahler (who proved it for sequences of algebraic numbers), and Christer Lech (who proved it for sequences whose elements belong to any field of characteristic 0). Its proofs use p-adic analysis.".
- Skolem–Mahler–Lech_theorem wikiPageID "30258454".
- Skolem–Mahler–Lech_theorem wikiPageLength "4085".
- Skolem–Mahler–Lech_theorem wikiPageOutDegree "20".
- Skolem–Mahler–Lech_theorem wikiPageRevisionID "708009166".
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Additive_number_theory.
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Algebraic_number.
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Arithmetic_progression.
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Category:Additive_number_theory.
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Category:Algebraic_number_theory.
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Category:Recurrence_relations.
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Category:Theorems_in_number_theory.
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Characteristic_(algebra).
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Christer_Lech.
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Fibonacci_number.
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Field_(mathematics).
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Finite_set.
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Kurt_Mahler.
- Skolem–Mahler–Lech_theorem wikiPageWikiLink P-adic_analysis.
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Parity_(mathematics).
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Rational_number.
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Recurrence_relation.
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Singleton_(mathematics).
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Skolem_problem.
- Skolem–Mahler–Lech_theorem wikiPageWikiLink Thoralf_Skolem.
- Skolem–Mahler–Lech_theorem wikiPageWikiLinkText "Skolem–Mahler–Lech theorem".
- Skolem–Mahler–Lech_theorem id "Skolem-Mahler-LechTheorem".
- Skolem–Mahler–Lech_theorem title "Skolem-Mahler-Lech Theorem".
- Skolem–Mahler–Lech_theorem wikiPageUsesTemplate Template:Citation.
- Skolem–Mahler–Lech_theorem wikiPageUsesTemplate Template:Harv.
- Skolem–Mahler–Lech_theorem wikiPageUsesTemplate Template:MathWorld.
- Skolem–Mahler–Lech_theorem subject Category:Additive_number_theory.
- Skolem–Mahler–Lech_theorem subject Category:Algebraic_number_theory.
- Skolem–Mahler–Lech_theorem subject Category:Recurrence_relations.
- Skolem–Mahler–Lech_theorem subject Category:Theorems_in_number_theory.
- Skolem–Mahler–Lech_theorem hypernym Form.
- Skolem–Mahler–Lech_theorem type Redirect.
- Skolem–Mahler–Lech_theorem type Theorem.
- Skolem–Mahler–Lech_theorem comment "In additive number theory, the Skolem–Mahler–Lech theorem states that if a sequence of numbers is generated by a linear recurrence relation, then with finitely many exceptions the positions at which the sequence is zero form a regularly repeating pattern. More precisely, this set of positions can be decomposed into the union of a finite set and finitely many full arithmetic progressions.".
- Skolem–Mahler–Lech_theorem label "Skolem–Mahler–Lech theorem".
- Skolem–Mahler–Lech_theorem sameAs Q2374733.
- Skolem–Mahler–Lech_theorem sameAs m.0g5b4pg.
- Skolem–Mahler–Lech_theorem sameAs Теорема_Скулема.
- Skolem–Mahler–Lech_theorem sameAs Q2374733.
- Skolem–Mahler–Lech_theorem wasDerivedFrom Skolem–Mahler–Lech_theorem?oldid=708009166.
- Skolem–Mahler–Lech_theorem isPrimaryTopicOf Skolem–Mahler–Lech_theorem.