Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Selbergs_zeta_function_conjecture> ?p ?o }
Showing triples 1 to 24 of
24
with 100 triples per page.
- Selbergs_zeta_function_conjecture abstract "In mathematics, the Selberg conjecture, named after Atle Selberg, is about the density of zeros of the Riemann zeta function ζ(1/2 + it). It is known that the function has infinitely many zeroes on this line in the complex plane: the point at issue is how densely they are clustered. Results on this can be formulated in terms of N(T), the function counting zeroes on the line for which the value of t satisfies 0 ≤ t ≤ T.".
- Selbergs_zeta_function_conjecture wikiPageID "31306009".
- Selbergs_zeta_function_conjecture wikiPageLength "4079".
- Selbergs_zeta_function_conjecture wikiPageOutDegree "7".
- Selbergs_zeta_function_conjecture wikiPageRevisionID "643847819".
- Selbergs_zeta_function_conjecture wikiPageWikiLink Anatolii_Karatsuba.
- Selbergs_zeta_function_conjecture wikiPageWikiLink Atle_Selberg.
- Selbergs_zeta_function_conjecture wikiPageWikiLink Category:Conjectures_which_were_proven.
- Selbergs_zeta_function_conjecture wikiPageWikiLink Category:Zeta_and_L-functions.
- Selbergs_zeta_function_conjecture wikiPageWikiLink Hardy–Littlewood_zeta-function_conjectures.
- Selbergs_zeta_function_conjecture wikiPageWikiLink Riemann_hypothesis.
- Selbergs_zeta_function_conjecture wikiPageWikiLink Riemann_zeta_function.
- Selbergs_zeta_function_conjecture wikiPageWikiLinkText "conjecture".
- Selbergs_zeta_function_conjecture wikiPageUsesTemplate Template:Reflist.
- Selbergs_zeta_function_conjecture subject Category:Conjectures_which_were_proven.
- Selbergs_zeta_function_conjecture subject Category:Zeta_and_L-functions.
- Selbergs_zeta_function_conjecture type Function.
- Selbergs_zeta_function_conjecture comment "In mathematics, the Selberg conjecture, named after Atle Selberg, is about the density of zeros of the Riemann zeta function ζ(1/2 + it). It is known that the function has infinitely many zeroes on this line in the complex plane: the point at issue is how densely they are clustered. Results on this can be formulated in terms of N(T), the function counting zeroes on the line for which the value of t satisfies 0 ≤ t ≤ T.".
- Selbergs_zeta_function_conjecture label "Selberg's zeta function conjecture".
- Selbergs_zeta_function_conjecture sameAs Q7447523.
- Selbergs_zeta_function_conjecture sameAs m.0gywzv9.
- Selbergs_zeta_function_conjecture sameAs Q7447523.
- Selbergs_zeta_function_conjecture wasDerivedFrom Selbergs_zeta_function_conjecture?oldid=643847819.
- Selbergs_zeta_function_conjecture isPrimaryTopicOf Selbergs_zeta_function_conjecture.