Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Selberg_trace_formula> ?p ?o }
Showing triples 1 to 79 of
79
with 100 triples per page.
- Selberg_trace_formula abstract "In mathematics, the Selberg trace formula, introduced by Selberg (1956), is an expression for the character of the unitary representation of G on the space L2(G/Γ) of square-integrable functions, where G is a Lie group and Γ a cofinite discrete group. The character is given by the trace of certain functions on G.The simplest case is when Γ is cocompact, when the representation breaks up into discrete summands. Here the trace formula is an extension of the Frobenius formula for the character of an induced representation of finite groups. When Γ is the cocompact subgroup Z of the real numbers G = R, the Selberg trace formula is essentially the Poisson summation formula.The case when G/Γ is not compact is harder, because there is a continuous spectrum, described using Eisenstein series. Selberg worked out the non-compact case when G is the group SL(2, R); the extension to higher rank groups is the Arthur-Selberg trace formula.When Γ is the fundamental group of a Riemann surface, the Selberg trace formula describes the spectrum of differential operators such as the Laplacian in terms of geometric data involving the lengths of geodesics on the Riemann surface. In this case the Selberg trace formula is formally similar to the explicit formulas relating the zeros of the Riemann zeta function to prime numbers, with the zeta zeros corresponding to eigenvalues of the Laplacian, and the primes corresponding to geodesics. Motivated by the analogy, Selberg introduced the Selberg zeta function of a Riemann surface, whose analytic properties are encoded by the Selberg trace formula.".
- Selberg_trace_formula wikiPageExternalLink 1077311789.
- Selberg_trace_formula wikiPageExternalLink physics4.htm.
- Selberg_trace_formula wikiPageID "981694".
- Selberg_trace_formula wikiPageLength "9356".
- Selberg_trace_formula wikiPageOutDegree "58".
- Selberg_trace_formula wikiPageRevisionID "694815201".
- Selberg_trace_formula wikiPageWikiLink Academic_Press.
- Selberg_trace_formula wikiPageWikiLink Arthur–Selberg_trace_formula.
- Selberg_trace_formula wikiPageWikiLink Atle_Selberg.
- Selberg_trace_formula wikiPageWikiLink Category:Automorphic_forms.
- Selberg_trace_formula wikiPageWikiLink Closed_geodesic.
- Selberg_trace_formula wikiPageWikiLink Cocompact_group_action.
- Selberg_trace_formula wikiPageWikiLink Communications_on_Pure_and_Applied_Mathematics.
- Selberg_trace_formula wikiPageWikiLink Compact_Riemann_surface.
- Selberg_trace_formula wikiPageWikiLink Congruence_subgroup.
- Selberg_trace_formula wikiPageWikiLink Continuous_spectrum.
- Selberg_trace_formula wikiPageWikiLink Cusp_form.
- Selberg_trace_formula wikiPageWikiLink Dennis_Hejhal.
- Selberg_trace_formula wikiPageWikiLink Differential_geometry.
- Selberg_trace_formula wikiPageWikiLink Discrete_group.
- Selberg_trace_formula wikiPageWikiLink Duke_Mathematical_Journal.
- Selberg_trace_formula wikiPageWikiLink Eichler-Shimura_theorem.
- Selberg_trace_formula wikiPageWikiLink Eichler–Shimura_isomorphism.
- Selberg_trace_formula wikiPageWikiLink Eisenstein_series.
- Selberg_trace_formula wikiPageWikiLink Endoscopic_group.
- Selberg_trace_formula wikiPageWikiLink Explicit_formulae_(L-function).
- Selberg_trace_formula wikiPageWikiLink Glossary_of_arithmetic_and_Diophantine_geometry.
- Selberg_trace_formula wikiPageWikiLink Goro_Shimura.
- Selberg_trace_formula wikiPageWikiLink Group_cohomology.
- Selberg_trace_formula wikiPageWikiLink Hasse–Weil_zeta_function.
- Selberg_trace_formula wikiPageWikiLink Hecke_operator.
- Selberg_trace_formula wikiPageWikiLink Induced_representation.
- Selberg_trace_formula wikiPageWikiLink Langlands_program.
- Selberg_trace_formula wikiPageWikiLink Laplace_operator.
- Selberg_trace_formula wikiPageWikiLink Laplace–Beltrami_operator.
- Selberg_trace_formula wikiPageWikiLink Length_spectrum.
- Selberg_trace_formula wikiPageWikiLink Lie_group.
- Selberg_trace_formula wikiPageWikiLink Linear_fractional_transformation.
- Selberg_trace_formula wikiPageWikiLink Martin_Eichler.
- Selberg_trace_formula wikiPageWikiLink Mathematics.
- Selberg_trace_formula wikiPageWikiLink Modular_curve.
- Selberg_trace_formula wikiPageWikiLink Modular_group.
- Selberg_trace_formula wikiPageWikiLink Number_theory.
- Selberg_trace_formula wikiPageWikiLink Poisson_summation_formula.
- Selberg_trace_formula wikiPageWikiLink Prime_number.
- Selberg_trace_formula wikiPageWikiLink Resolvent_formalism.
- Selberg_trace_formula wikiPageWikiLink Riemann_surface.
- Selberg_trace_formula wikiPageWikiLink Riemann_zeta_function.
- Selberg_trace_formula wikiPageWikiLink Riemann–Roch_theorem.
- Selberg_trace_formula wikiPageWikiLink Selberg_zeta_function.
- Selberg_trace_formula wikiPageWikiLink Springer_Science+Business_Media.
- Selberg_trace_formula wikiPageWikiLink Square-integrable_function.
- Selberg_trace_formula wikiPageWikiLink Unitary_representation.
- Selberg_trace_formula wikiPageWikiLink Upper_half-plane.
- Selberg_trace_formula wikiPageWikiLinkText "Selberg trace formula".
- Selberg_trace_formula wikiPageWikiLinkText "trace formula".
- Selberg_trace_formula wikiPageUsesTemplate Template:!.
- Selberg_trace_formula wikiPageUsesTemplate Template:=.
- Selberg_trace_formula wikiPageUsesTemplate Template:Citation.
- Selberg_trace_formula wikiPageUsesTemplate Template:Harvtxt.
- Selberg_trace_formula wikiPageUsesTemplate Template:Math.
- Selberg_trace_formula wikiPageUsesTemplate Template:Mvar.
- Selberg_trace_formula wikiPageUsesTemplate Template:Sfrac.
- Selberg_trace_formula subject Category:Automorphic_forms.
- Selberg_trace_formula hypernym Expression.
- Selberg_trace_formula type Group.
- Selberg_trace_formula type Organisation.
- Selberg_trace_formula type Group.
- Selberg_trace_formula comment "In mathematics, the Selberg trace formula, introduced by Selberg (1956), is an expression for the character of the unitary representation of G on the space L2(G/Γ) of square-integrable functions, where G is a Lie group and Γ a cofinite discrete group. The character is given by the trace of certain functions on G.The simplest case is when Γ is cocompact, when the representation breaks up into discrete summands.".
- Selberg_trace_formula label "Selberg trace formula".
- Selberg_trace_formula sameAs Q3077649.
- Selberg_trace_formula sameAs Formule_des_traces_de_Selberg.
- Selberg_trace_formula sameAs セルバーグ跡公式.
- Selberg_trace_formula sameAs m.03wfr6.
- Selberg_trace_formula sameAs Q3077649.
- Selberg_trace_formula sameAs 塞爾伯格跡公式.
- Selberg_trace_formula wasDerivedFrom Selberg_trace_formula?oldid=694815201.
- Selberg_trace_formula isPrimaryTopicOf Selberg_trace_formula.