Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Schurs_lemma> ?p ?o }
Showing triples 1 to 82 of
82
with 100 triples per page.
- Schurs_lemma abstract "In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N and φ is a self-map. The lemma is named after Issai Schur who used it to prove Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which is due to Jacques Dixmier.".
- Schurs_lemma wikiPageID "5080467".
- Schurs_lemma wikiPageID "521696".
- Schurs_lemma wikiPageLength "51".
- Schurs_lemma wikiPageLength "6643".
- Schurs_lemma wikiPageOutDegree "1".
- Schurs_lemma wikiPageOutDegree "43".
- Schurs_lemma wikiPageRedirects Schurs_lemma.
- Schurs_lemma wikiPageRevisionID "345895273".
- Schurs_lemma wikiPageRevisionID "688201256".
- Schurs_lemma wikiPageWikiLink Abelian_group.
- Schurs_lemma wikiPageWikiLink Absolutely_irreducible.
- Schurs_lemma wikiPageWikiLink Algebra.
- Schurs_lemma wikiPageWikiLink Algebraically_closed_field.
- Schurs_lemma wikiPageWikiLink Alternating_group.
- Schurs_lemma wikiPageWikiLink Category:Lemmas.
- Schurs_lemma wikiPageWikiLink Category:Representation_theory.
- Schurs_lemma wikiPageWikiLink Commuting_matrices.
- Schurs_lemma wikiPageWikiLink Diagonal_matrix.
- Schurs_lemma wikiPageWikiLink Division_algebra.
- Schurs_lemma wikiPageWikiLink Division_ring.
- Schurs_lemma wikiPageWikiLink Endomorphism_ring.
- Schurs_lemma wikiPageWikiLink Group_(mathematics).
- Schurs_lemma wikiPageWikiLink Group_ring.
- Schurs_lemma wikiPageWikiLink Homomorphism.
- Schurs_lemma wikiPageWikiLink Indecomposable_module.
- Schurs_lemma wikiPageWikiLink Integer.
- Schurs_lemma wikiPageWikiLink Inverse_element.
- Schurs_lemma wikiPageWikiLink Irreducible_representation.
- Schurs_lemma wikiPageWikiLink Issai_Schur.
- Schurs_lemma wikiPageWikiLink Jacobson_radical.
- Schurs_lemma wikiPageWikiLink Jacques_Dixmier.
- Schurs_lemma wikiPageWikiLink Length_of_a_module.
- Schurs_lemma wikiPageWikiLink Lie_algebra.
- Schurs_lemma wikiPageWikiLink Lie_group.
- Schurs_lemma wikiPageWikiLink Linear_subspace.
- Schurs_lemma wikiPageWikiLink Local_ring.
- Schurs_lemma wikiPageWikiLink Mathematics.
- Schurs_lemma wikiPageWikiLink Matrix_group.
- Schurs_lemma wikiPageWikiLink Matrix_multiplication.
- Schurs_lemma wikiPageWikiLink Projective_cover.
- Schurs_lemma wikiPageWikiLink Quillens_lemma.
- Schurs_lemma wikiPageWikiLink Rational_number.
- Schurs_lemma wikiPageWikiLink Representation_theory.
- Schurs_lemma wikiPageWikiLink Representation_theory_of_finite_groups.
- Schurs_lemma wikiPageWikiLink Schur_complement.
- Schurs_lemma wikiPageWikiLink Schur_orthogonality_relations.
- Schurs_lemma wikiPageWikiLink Schurs_lemma.
- Schurs_lemma wikiPageWikiLink Simple_module.
- Schurs_lemma wikiPageWikiLink Springer_Science+Business_Media.
- Schurs_lemma wikiPageWikiLinkText "Schur's lemma".
- Schurs_lemma wikiPageUsesTemplate Template:Cite_book.
- Schurs_lemma wikiPageUsesTemplate Template:Harv.
- Schurs_lemma wikiPageUsesTemplate Template:Other_uses.
- Schurs_lemma wikiPageUsesTemplate Template:R_from_modification.
- Schurs_lemma wikiPageUsesTemplate Template:Reflist.
- Schurs_lemma subject Category:Lemmas.
- Schurs_lemma subject Category:Representation_theory.
- Schurs_lemma type Field.
- Schurs_lemma type Lemma.
- Schurs_lemma type Redirect.
- Schurs_lemma type Theorem.
- Schurs_lemma comment "In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N and φ is a self-map.".
- Schurs_lemma label "Schur's lemma".
- Schurs_lemma label "Schurs lemma".
- Schurs_lemma sameAs Q1816952.
- Schurs_lemma sameAs Lemma_von_Schur.
- Schurs_lemma sameAs Lema_de_Schur.
- Schurs_lemma sameAs Lemme_de_Schur.
- Schurs_lemma sameAs הלמה_של_שור.
- Schurs_lemma sameAs Lemma_di_Schur.
- Schurs_lemma sameAs シューアの補題.
- Schurs_lemma sameAs 슈어_보조정리.
- Schurs_lemma sameAs Lemma_van_Schur.
- Schurs_lemma sameAs m.02l3pj.
- Schurs_lemma sameAs Лемма_Шура.
- Schurs_lemma sameAs Шурове_леме.
- Schurs_lemma sameAs Q1816952.
- Schurs_lemma sameAs 舒尔引理.
- Schurs_lemma wasDerivedFrom Schurs_lemma?oldid=345895273.
- Schurs_lemma wasDerivedFrom Schurs_lemma?oldid=688201256.
- Schurs_lemma isPrimaryTopicOf Schurs_lemma.