Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Romanovski_polynomials> ?p ?o }
Showing triples 1 to 45 of
45
with 100 triples per page.
- Romanovski_polynomials abstract "In mathematics, Romanovski polynomials is an informal term for one of three finite subsets of real orthogonal polynomials discovered by Vsevolod Romanovsky (Romanovski in French transcription) within the context of probability distribution functions in statistics. They form an orthogonal subset of a more general family of little-known Routh polynomials introduced Edward John Routh in 1884. The term Romanovski polynomials was put forward by Raposo, with reference to the so-called 'pseudo Jacobi polynomials in Lesky's classification scheme. It seems more consistent to refer to them as Romanovski-Routh polynomials, by analogy with the terms Romanovski-Bessel and Romanovski-Jacobi used by Lesky for two other sets of orthogonal polynomials.In some contrast to the standard classical orthogonal polynomials, the polynomials under consideration differ, in so far as for arbitrary parameters only a finite number of them are orthogonal, as discussed in more detail below.".
- Romanovski_polynomials wikiPageExternalLink JacobiDifferentialEquation.html.
- Romanovski_polynomials wikiPageID "48536047".
- Romanovski_polynomials wikiPageLength "16597".
- Romanovski_polynomials wikiPageOutDegree "25".
- Romanovski_polynomials wikiPageRevisionID "699615891".
- Romanovski_polynomials wikiPageWikiLink Category:Orthogonal_polynomials.
- Romanovski_polynomials wikiPageWikiLink Category:Polynomials.
- Romanovski_polynomials wikiPageWikiLink Category:Special_hypergeometric_functions.
- Romanovski_polynomials wikiPageWikiLink Cauchy_distribution.
- Romanovski_polynomials wikiPageWikiLink Edward_Routh.
- Romanovski_polynomials wikiPageWikiLink Gaussian_quadrature.
- Romanovski_polynomials wikiPageWikiLink Gegenbauer_polynomials.
- Romanovski_polynomials wikiPageWikiLink Generating_function.
- Romanovski_polynomials wikiPageWikiLink Hypergeometric_function.
- Romanovski_polynomials wikiPageWikiLink Jacobi_polynomials.
- Romanovski_polynomials wikiPageWikiLink Legendre_function.
- Romanovski_polynomials wikiPageWikiLink Legendre_polynomials.
- Romanovski_polynomials wikiPageWikiLink Legendre_rational_functions.
- Romanovski_polynomials wikiPageWikiLink Legendre_wavelet.
- Romanovski_polynomials wikiPageWikiLink Mathematics.
- Romanovski_polynomials wikiPageWikiLink Ordinary_differential_equation.
- Romanovski_polynomials wikiPageWikiLink Recurrence_relation.
- Romanovski_polynomials wikiPageWikiLink Self-adjoint_operator.
- Romanovski_polynomials wikiPageWikiLink Special_functions.
- Romanovski_polynomials wikiPageWikiLink Spherical_harmonics.
- Romanovski_polynomials wikiPageWikiLink Sturm–Liouville_theory.
- Romanovski_polynomials wikiPageWikiLink Turxc3xa1ns_inequalities.
- Romanovski_polynomials wikiPageWikiLinkText "Romanovski polynomials".
- Romanovski_polynomials wikiPageUsesTemplate Template:Authority_control.
- Romanovski_polynomials wikiPageUsesTemplate Template:Citation.
- Romanovski_polynomials wikiPageUsesTemplate Template:EquationNote.
- Romanovski_polynomials wikiPageUsesTemplate Template:EquationRef.
- Romanovski_polynomials wikiPageUsesTemplate Template:Math.
- Romanovski_polynomials wikiPageUsesTemplate Template:Mvar.
- Romanovski_polynomials wikiPageUsesTemplate Template:NumBlk.
- Romanovski_polynomials subject Category:Orthogonal_polynomials.
- Romanovski_polynomials subject Category:Polynomials.
- Romanovski_polynomials subject Category:Special_hypergeometric_functions.
- Romanovski_polynomials hypernym Term.
- Romanovski_polynomials type Thing.
- Romanovski_polynomials comment "In mathematics, Romanovski polynomials is an informal term for one of three finite subsets of real orthogonal polynomials discovered by Vsevolod Romanovsky (Romanovski in French transcription) within the context of probability distribution functions in statistics. They form an orthogonal subset of a more general family of little-known Routh polynomials introduced Edward John Routh in 1884.".
- Romanovski_polynomials label "Romanovski polynomials".
- Romanovski_polynomials wasDerivedFrom Romanovski_polynomials?oldid=699615891.
- Romanovski_polynomials isPrimaryTopicOf Romanovski_polynomials.