Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Rogers_polynomials> ?p ?o }
Showing triples 1 to 43 of
43
with 100 triples per page.
- Rogers_polynomials abstract "In mathematics, the Rogers polynomials, also called Rogers–Askey–Ismail polynomials and continuous q-ultraspherical polynomials, are a family of orthogonal polynomials introduced by Rogers (1892, 1893, 1894) in the course of his work on the Rogers–Ramanujan identities. They are q-analogs of ultraspherical polynomials, and are the Macdonald polynomials for the special case of the A1 affine root system (Macdonald 2003, p.156).Askey & Ismail (1983) and Gasper & Rahman (2004, 7.4) discuss the properties of Rogers polynomials in detail.".
- Rogers_polynomials wikiPageExternalLink books?id=WePuAAAAMAAJ.
- Rogers_polynomials wikiPageID "32744201".
- Rogers_polynomials wikiPageLength "2857".
- Rogers_polynomials wikiPageOutDegree "10".
- Rogers_polynomials wikiPageRevisionID "605245242".
- Rogers_polynomials wikiPageWikiLink Affine_root_system.
- Rogers_polynomials wikiPageWikiLink Basic_hypergeometric_series.
- Rogers_polynomials wikiPageWikiLink Cambridge_University_Press.
- Rogers_polynomials wikiPageWikiLink Category:Orthogonal_polynomials.
- Rogers_polynomials wikiPageWikiLink Category:Q-analogs.
- Rogers_polynomials wikiPageWikiLink Gegenbauer_polynomials.
- Rogers_polynomials wikiPageWikiLink Macdonald_polynomials.
- Rogers_polynomials wikiPageWikiLink Orthogonal_polynomials.
- Rogers_polynomials wikiPageWikiLink Rogers–Ramanujan_identities.
- Rogers_polynomials wikiPageWikiLinkText "Rogers polynomials".
- Rogers_polynomials authorlink "Leonard James Rogers".
- Rogers_polynomials last "Rogers".
- Rogers_polynomials wikiPageUsesTemplate Template:Citation.
- Rogers_polynomials wikiPageUsesTemplate Template:Distinguish.
- Rogers_polynomials wikiPageUsesTemplate Template:Harv.
- Rogers_polynomials wikiPageUsesTemplate Template:Harvs.
- Rogers_polynomials wikiPageUsesTemplate Template:Harvtxt.
- Rogers_polynomials year "1892".
- Rogers_polynomials year "1893".
- Rogers_polynomials year "1894".
- Rogers_polynomials subject Category:Orthogonal_polynomials.
- Rogers_polynomials subject Category:Q-analogs.
- Rogers_polynomials hypernym Family.
- Rogers_polynomials type Combinatoric.
- Rogers_polynomials type Function.
- Rogers_polynomials type Polynomial.
- Rogers_polynomials type Thing.
- Rogers_polynomials comment "In mathematics, the Rogers polynomials, also called Rogers–Askey–Ismail polynomials and continuous q-ultraspherical polynomials, are a family of orthogonal polynomials introduced by Rogers (1892, 1893, 1894) in the course of his work on the Rogers–Ramanujan identities.".
- Rogers_polynomials label "Rogers polynomials".
- Rogers_polynomials differentFrom Rogers–Szegő_polynomials.
- Rogers_polynomials sameAs Q7359351.
- Rogers_polynomials sameAs m.0h3sx0g.
- Rogers_polynomials sameAs Rogerspolynom.
- Rogers_polynomials sameAs Q7359351.
- Rogers_polynomials sameAs 罗杰斯多项式.
- Rogers_polynomials wasDerivedFrom Rogers_polynomials?oldid=605245242.
- Rogers_polynomials isPrimaryTopicOf Rogers_polynomials.