Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Reflexive_operator_algebra> ?p ?o }
Showing triples 1 to 37 of
37
with 100 triples per page.
- Reflexive_operator_algebra abstract "In functional analysis, a reflexive operator algebra A is an operator algebra that has enough invariant subspaces to characterize it. Formally, A is reflexive if it is equal to the algebra of bounded operators which leave invariant each subspace left invariant by every operator in A. This should not be confused with a reflexive space.".
- Reflexive_operator_algebra wikiPageID "460478".
- Reflexive_operator_algebra wikiPageLength "4440".
- Reflexive_operator_algebra wikiPageOutDegree "19".
- Reflexive_operator_algebra wikiPageRevisionID "596387564".
- Reflexive_operator_algebra wikiPageWikiLink Bounded_operator.
- Reflexive_operator_algebra wikiPageWikiLink Category:Invariant_subspaces.
- Reflexive_operator_algebra wikiPageWikiLink Category:Operator_algebras.
- Reflexive_operator_algebra wikiPageWikiLink Category:Operator_theory.
- Reflexive_operator_algebra wikiPageWikiLink Functional_analysis.
- Reflexive_operator_algebra wikiPageWikiLink Hilbert_space.
- Reflexive_operator_algebra wikiPageWikiLink Invariant_(mathematics).
- Reflexive_operator_algebra wikiPageWikiLink Invariant_subspace.
- Reflexive_operator_algebra wikiPageWikiLink Jordan_normal_form.
- Reflexive_operator_algebra wikiPageWikiLink Linear_subspace.
- Reflexive_operator_algebra wikiPageWikiLink Nest_algebra.
- Reflexive_operator_algebra wikiPageWikiLink Operator_algebra.
- Reflexive_operator_algebra wikiPageWikiLink Reflexive_space.
- Reflexive_operator_algebra wikiPageWikiLink Reflexive_subspace_lattice.
- Reflexive_operator_algebra wikiPageWikiLink Subspace_lattice.
- Reflexive_operator_algebra wikiPageWikiLink Von_Neumann_algebra.
- Reflexive_operator_algebra wikiPageWikiLinkText "Reflexive operator algebra".
- Reflexive_operator_algebra wikiPageWikiLinkText "reflexive operator algebra".
- Reflexive_operator_algebra wikiPageWikiLinkText "reflexive".
- Reflexive_operator_algebra subject Category:Invariant_subspaces.
- Reflexive_operator_algebra subject Category:Operator_algebras.
- Reflexive_operator_algebra subject Category:Operator_theory.
- Reflexive_operator_algebra hypernym Algebra.
- Reflexive_operator_algebra type Algebra.
- Reflexive_operator_algebra type Physic.
- Reflexive_operator_algebra comment "In functional analysis, a reflexive operator algebra A is an operator algebra that has enough invariant subspaces to characterize it. Formally, A is reflexive if it is equal to the algebra of bounded operators which leave invariant each subspace left invariant by every operator in A. This should not be confused with a reflexive space.".
- Reflexive_operator_algebra label "Reflexive operator algebra".
- Reflexive_operator_algebra sameAs Q7307359.
- Reflexive_operator_algebra sameAs m.02c7s8.
- Reflexive_operator_algebra sameAs Q7307359.
- Reflexive_operator_algebra wasDerivedFrom Reflexive_operator_algebra?oldid=596387564.
- Reflexive_operator_algebra isPrimaryTopicOf Reflexive_operator_algebra.