Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Quantization_commutes_with_reduction> ?p ?o }
Showing triples 1 to 23 of
23
with 100 triples per page.
- Quantization_commutes_with_reduction abstract "In mathematics, more specifically in the context of geometric quantization, quantization commutes with reduction states that the space of global sections of a line bundle satisfying the quantization condition on the symplectic quotient of a compact symplectic manifold is the space of invariant sections of the line bundle.This was conjectured in 1980s by Guillemin and Sternberg and was proven in 1990s by Meinrenken (the second paper used symplectic cut) as well as Tian and Zhang. For the formulation due to Teleman, see C. Woodward's notes.".
- Quantization_commutes_with_reduction wikiPageID "44977826".
- Quantization_commutes_with_reduction wikiPageLength "2281".
- Quantization_commutes_with_reduction wikiPageOutDegree "8".
- Quantization_commutes_with_reduction wikiPageRevisionID "661185694".
- Quantization_commutes_with_reduction wikiPageWikiLink Category:Mathematical_quantization.
- Quantization_commutes_with_reduction wikiPageWikiLink Geometric_invariant_theory.
- Quantization_commutes_with_reduction wikiPageWikiLink Geometric_quantization.
- Quantization_commutes_with_reduction wikiPageWikiLink Inventiones_Mathematicae.
- Quantization_commutes_with_reduction wikiPageWikiLink Moment_map.
- Quantization_commutes_with_reduction wikiPageWikiLink Symplectic_cut.
- Quantization_commutes_with_reduction wikiPageWikiLink Symplectic_manifold.
- Quantization_commutes_with_reduction wikiPageWikiLinkText "Quantization commutes with reduction".
- Quantization_commutes_with_reduction wikiPageUsesTemplate Template:Citation.
- Quantization_commutes_with_reduction wikiPageUsesTemplate Template:Geometry-stub.
- Quantization_commutes_with_reduction wikiPageUsesTemplate Template:Reflist.
- Quantization_commutes_with_reduction subject Category:Mathematical_quantization.
- Quantization_commutes_with_reduction hypernym Space.
- Quantization_commutes_with_reduction comment "In mathematics, more specifically in the context of geometric quantization, quantization commutes with reduction states that the space of global sections of a line bundle satisfying the quantization condition on the symplectic quotient of a compact symplectic manifold is the space of invariant sections of the line bundle.This was conjectured in 1980s by Guillemin and Sternberg and was proven in 1990s by Meinrenken (the second paper used symplectic cut) as well as Tian and Zhang.".
- Quantization_commutes_with_reduction label "Quantization commutes with reduction".
- Quantization_commutes_with_reduction sameAs m.012mc4_6.
- Quantization_commutes_with_reduction wasDerivedFrom Quantization_commutes_with_reduction?oldid=661185694.
- Quantization_commutes_with_reduction isPrimaryTopicOf Quantization_commutes_with_reduction.