Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Porteous_formula> ?p ?o }
Showing triples 1 to 36 of
36
with 100 triples per page.
- Porteous_formula abstract "In mathematics, the Porteous formula, or Thom–Porteous formula, or Giambelli–Thom–Porteous formula, is an expression for the fundamental class of a degeneracy locus (or determinantal variety) of a morphism of vector bundles in terms of Chern classes. Giambelli's formula is roughly the special case when the vector bundles are sums of line bundles over projective space. Thom (1957) pointed out that the fundamental class must be a polynomial in the Chern classes and found this polynomial in a few special cases, and Porteous (1971) found the polynomial in general. Kempf & Laksov (1974) proved a more general version, and Fulton (1992) generalized it further.".
- Porteous_formula wikiPageExternalLink S0012-7094-92-06516-1.
- Porteous_formula wikiPageID "34781467".
- Porteous_formula wikiPageID "34781468".
- Porteous_formula wikiPageLength "2599".
- Porteous_formula wikiPageLength "29".
- Porteous_formula wikiPageOutDegree "1".
- Porteous_formula wikiPageOutDegree "7".
- Porteous_formula wikiPageRedirects Porteous_formula.
- Porteous_formula wikiPageRevisionID "477465257".
- Porteous_formula wikiPageRevisionID "643543975".
- Porteous_formula wikiPageWikiLink Acta_Mathematica.
- Porteous_formula wikiPageWikiLink Category:Theorems_in_algebraic_geometry.
- Porteous_formula wikiPageWikiLink Chern_class.
- Porteous_formula wikiPageWikiLink Determinantal_variety.
- Porteous_formula wikiPageWikiLink Duke_Mathematical_Journal.
- Porteous_formula wikiPageWikiLink Giambellis_formula.
- Porteous_formula wikiPageWikiLink Porteous_formula.
- Porteous_formula wikiPageWikiLink Springer_Science+Business_Media.
- Porteous_formula wikiPageWikiLinkText "Porteous formula".
- Porteous_formula wikiPageUsesTemplate Template:Citation.
- Porteous_formula wikiPageUsesTemplate Template:Harvs.
- Porteous_formula wikiPageUsesTemplate Template:Harvtxt.
- Porteous_formula subject Category:Theorems_in_algebraic_geometry.
- Porteous_formula hypernym Expression.
- Porteous_formula type Organisation.
- Porteous_formula comment "In mathematics, the Porteous formula, or Thom–Porteous formula, or Giambelli–Thom–Porteous formula, is an expression for the fundamental class of a degeneracy locus (or determinantal variety) of a morphism of vector bundles in terms of Chern classes. Giambelli's formula is roughly the special case when the vector bundles are sums of line bundles over projective space.".
- Porteous_formula label "Porteous formula".
- Porteous_formula label "Porteous' formula".
- Porteous_formula sameAs Q7231572.
- Porteous_formula sameAs Fórmula_de_Porteous.
- Porteous_formula sameAs m.0j3g91d.
- Porteous_formula sameAs Q7231572.
- Porteous_formula wasDerivedFrom Porteous_formula?oldid=477465257.
- Porteous_formula wasDerivedFrom Porteous_formula?oldid=643543975.
- Porteous_formula isPrimaryTopicOf Porteous_formula.